Photodegradation for Nutrient Management in the Dry Tropics


Nutrient limitation in agriculture is a big problem in many tropical areas. Much research has focused on the optimal use of crop residues in agriculture. Recent work indicates that plant residue decomposition rates, including nutrient release rates can be increased by pre-exposure to sunlight. This has potential as a technology to manipulate nutrient release from residues to match crop demands. The possible development and use of this technology is discussed. There is some evidence that this could increase emissions of trace gases, but the increase is thought to be small. Research needs are discussed.

Share and Cite:

B. Foereid, "Photodegradation for Nutrient Management in the Dry Tropics," Open Journal of Soil Science, Vol. 2 No. 1, 2012, pp. 17-19. doi: 10.4236/ojss.2012.21003.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] R. Gentile, B. Vanlauwe, P. Chivenge and J. Six, “Trade-Offs between the Short- and Long-Term Effects of Residue Quality on Soil C and N Dynamics,” Plant and Soil, Vol. 338, No. 1-2, 2011, pp. 159-169. doi:10.1007/s11104-010-0360-z
[2] C. A. Palm, K. E. Giller, P. L. Mafongoya and M. J. Swift, “Management of Organic Matter in the Tropics: Translating Theory into Practice,” Nutrient Cycling in Agroeco- system, Vol. 61, No. 1-2, 2001, pp. 63-75. doi:10.1023/A:1013318210809
[3] V. A. Pancotto, O. E. Sala, T. M. Robson, M. M. Caldwell and A. L. Scopel, “Direct and Indirect Effects of Solar Ultraviolet-B Radiation on Long-Term Decomposition,” Global Change Biology, Vol. 11, No. 11, 2005, pp. 1982-1989. doi:10.1111/j.1365-2486.2005.1027.x
[4] A. T. Austin and L. Vivanco, “Plant Litter Decomposition in a Semi-Arid Ecosystem Controlled by Photodegradation,” Nature, Vol. 442, 2006, pp. 555-558.
[5] W. Parton, W. L. Silver, I. C. Burke, L. Grassens, M. E. Harmon, W. S. Currie, J. Y. King, E. C. Adair, L. A. Brandt, S. C. Hart and B. Fasth, “Global-Scale Similarities in Nitrogen Release Patterns During Long-Term De- composition,” Science, Vol. 315, No. 5810, 2007, pp. 361- 364. doi:10.1126/science.1134853
[6] G. Tian, M. Badejo, A. Okoh, F. Ishida, G. Kolawole, Y. Hayashi, and F. Salako, “Effects of Residue Quality and Climate on Plant Residue Decomposition and Nutrient Release along the Transect from Humid Forest to Sahel of West Africa,” Biogeochemistry, Vol. 86, No. 2, 2007, pp. 217-229. doi:10.1007/s10533-007-9158-3
[7] T. A. Day, E. T. Zhang and C. T. Ruhland, “Exposure to Solar UV-B radiation Accelerates Mass and Lignin Loss of Larrea tridentata Litter in the Sonoran Desert,” Plant Ecology, Vol. 193, No. 2, 2007, pp. 185-194. doi:10.1007/s11258-006-9257-6
[8] K. L. Vanderbilt, C. S. White, O. Hopkins and J. A. Craig, “Aboveground Decomposition in Arid Environments: Results of a Long-Term Study in Central New Mexico,” Journal of Arid Environments, Vol. 72, No. 5, 2008, pp. 696-709. doi:10.1016/j.jaridenv.2007.10.010
[9] B. Foereid, M. J. Rivero, O. Primo and I. Ortiz, “Modelling Photodegradation in the Global Carbon Cycle,” Soil Biology & Biochemistry, Vol. 43, No. 6, 2011, pp. 1383- 1386. doi:10.1016/j.soilbio.2011.03.004
[10] B. Foereid, J. Bellarby, W. Meier-Augenstein and H. Kemp, “Does Light Exposure Make Plant Litter More Degradable?” Plant and Soil, Vol. 333, No.1-2, 2010, pp. 275- 285. doi:10.1007/s11104-010-0342-1
[11] L. A. Brandt, C. Bohnet and K. Y. King. “Photochemically Induced Carbon Dioxide Production as a Mechanism for Carbon as a Mechanism for Carbon Loss from Plant Litter in Arid Ecosystems,” Journal of Geophysical Research, Vol. 114, 2009, p. 13. doi:10.1029/2008JG000772
[12] M. U. F. Kirschbaum, S. M. Lambie and H. Zhou, “No UV Enhancement of Litter Decomposition Observed on Dry Samples under Controlled Laboratory Conditions,” Soil Biology & Biochemistry, Vol. 43, No. 6, 2011, pp. 1300-1307. doi:10.1016/j.soilbio.2011.03.001
[13] A. T. Austin and C. L. Ballare, “Dual Role of Lignin in Plant Litter Decomposition in Terrestrial Ecosystems,” Proceedings of the National Academy of Sciences, Vol. 107, No. 10, 2010, pp. 4618-4622. doi:10.1073/pnas.0909396107
[14] R. G. Zepp, D. J. Erickson, N. D. Paulc and B. Sulzberger “Interactive Effects of Solar UV Radiation and Climate Change on Biogeochemical Cycling,” Photochemical & Photobiological Sciences, Vol. 6, 2007, pp. 286-300. doi:10.1039/b700021a
[15] F. Keppler, J. T. G. Hamilton, M. Bass and T. Rockmann, “Methane Emissions from Terrestril Plants under Aerobic Conditions,” Nature, Vol. 439, 2006, pp. 187-191.
[16] A. R. McLeod, S. C. Fry, G. J. Loake, D. J. Messenger, D. S. Reay, K. A. Smith and B.-W. Yun, “Ultraviolet Radiation Drives Methane Emissions from Terrestrial Plant pectins,” New Phytologist, Vol. 180, No. 1, 2008, pp. 124- 132.doi:10.1111/j.1469-8137.2008.02571.x
[17] R. E. R. Nisbeth, R. Fisher, R. H. Nimmo, D. S. Bendall, P. M. Crill, A. V. Gallego-Sala, E. R. C. Hornibrook, E. Lopez-Juez, D. Lowry, P. B. R. Nisbeth, E. F. Shuck- burgh, S. Sriskantharajah, C. J. Howe and E. G. Nisbeth, “Emission of Methane from Plants,” Proceedings of the Royal Society, Vol. 276, No. 1660, 2009, pp. 1347-1354.

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.