Share This Article:

Through-Thickness Thermal Conductivity Prediction Study on Nanocomposites and Multiscale Composites

Abstract Full-Text HTML Download Download as PDF (Size:1415KB) PP. 131-138
DOI: 10.4236/msa.2012.33021    5,831 Downloads   9,752 Views   Citations

ABSTRACT

In this research, a modeling and experimental study was conducted to explore the effects of nanoparticle type (aluminum nanoparticles and carbon nanotubes), filler concentration and interactions between the nanoparticle and reinforcing fibers on through-thickness conductivity of nanoparticle/epoxy nanocomposites and nanoparticle/fiber-reinforced multiscale composites. Multiple, notable micromechanical models were evaluated to predict through-thickness thermal conductivity of both composite systems, and then compared to the experimental results. The results showed that filler volume fraction ranges and thermal conductivity differences of the constituent materials for the thermal conductivity ratio (km/kf or kf/km) used in the models can affect the resulting predictions. Certain models were found to be suitable for varying conditions on the thermal conductivity ratio. Finite element models (FEM) were developed to reveal heat transport mechanisms of the resultant nanocomposites and multiscale composites. The nanocomposite design for finite element analysis (FEA) provided close predictions and performed better than the micromechanical models. On the multiscale composite system, predictions were concluded to be dependent upon the FEM design where the interactions between nanoparticles and fibers are critical to accurately determine the through-thickness thermal conductivity.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

M. Zimmer, X. Fan, J. Bao, R. Liang, B. Wang, C. Zhang and J. Brooks, "Through-Thickness Thermal Conductivity Prediction Study on Nanocomposites and Multiscale Composites," Materials Sciences and Applications, Vol. 3 No. 3, 2012, pp. 131-138. doi: 10.4236/msa.2012.33021.

References

[1] C. Zweben, “Thermal Materials Solve Power Electronics Challenges,” Power Electronics Technology, No. 2, 2006, pp. 40-47.
[2] K. Stevens, “AFRL/MLBC Thermal Management Workshop,” Wright Patterson Air Force Base, Greene, 2005.
[3] W. D. Callister Jr., “Materials Science and Engineering,” 6th Edition, John Wiley & Sons Inc., Hoboken, 2003.
[4] H. He, F. Fu, Y. Shen, Y. Han and X. Song, “Preparations and Properties of Si3N4/PS Composites Used for Electronic Packaging,” Composites Science and Technology, Vol. 67, No. 11-12, 2007, pp. 2493-2499. doi:10.1016/j.compscitech.2006.12.014
[5] D. D. L. Chung, “Materials for Thermal Conduction,” Applied Thermal Engineering, Vol. 21, No. 16, 2001, pp. 1593-1605. doi:10.1016/S1359-4311(01)00042-4
[6] Epoxies Etc., 2005. http://www.epoxies.com
[7] B. Weidenfeller, M. Hofer and F. R. Schilling, “Thermal Conductivity, Thermal Diffusivity, and Specific Heat Capacity of Particle Filled Polypropylene,” Composites Part A: Applied Science and Manufacturing, Vol. 35, No. 4, 2004, pp. 423-429. doi:10.1016/j.compositesa.2003.11.005
[8] F. Danes, B. Garnier and T. Dupuis, “Predicting, Measuring, and Tailoring the Transverse Thermal Conductivity of Composites from Polymer Matrix and Metal Filler,” International Journal of Thermophysics, Vol. 24, No. 3, 2003, pp. 771-784. doi:10.1023/A:1024096401779
[9] G.-W. Lee, M. Park, J. Kim, J. I. Lee and H. G. Yoon, “Enhanced Thermal Conductivity of Polymer Composites Filled with Hybrid Filler,” Composites Part A: Applied Science and Manufacturing, Vol. 37, No. 5, 2005, pp. 727-734. doi:10.1016/j.compositesa.2005.07.006
[10] Y. Xu, D. D. L. Chung and C. Mroz, “Thermally Conducting Aluminum Nitride Polymer-Matrix Composites,” Composites Part A: Applied Science and Manufacturing, Vol. 32, No. 12, 2001, pp. 1749-1757. doi:10.1016/S1359-835X(01)00023-9
[11] M. J. Biercuk, M. C. Llaguno, M. Radosavljevic, J. K. Hyun and A. T. Johnson, “Carbon Nanotube Composites for Thermal Management,” Applied Physics Letters, Vol. 80, No. 15, 2002, pp. 2767-2769. doi:10.1063/1.1469696
[12] S. A. Gordeye, F. J. Macedo, J. A. Ferrerira, F. W. J. van Hattum and C. A. Bernardo, “Transport Properties of Polymer-Vapor Grown Carbon Fiber Composites,” Physica B: Condensed Matter, Vol. 279, No. 1-3, 2000, pp. 33-36. doi:10.1016/S0921-4526(99)00660-2
[13] H. O. Pierson, “Hand book of Carbon, Graphite, Diamond and fullerenes Properties, Processing and Applications,” William Andrew Publishing, Noyes, 1993.
[14] P. K. Mallick, “Fiber-Reinforced Composites—Materials, Manufacturing, and Design,” 2nd Edition, Marcel Dekker Inc., New York, 1993.
[15] E. P. Scott and J. V. Beck, “Estimation of Thermal Properties in Epoxy Matrix/Carbon Fiber Composite Materials,” Journal of Composite Materials, Vol. 26, No. 1, 1992, pp. 132-149. doi:10.1177/002199839202600109
[16] I. H. Tavman and H. Akinci, “Transverse Thermal Conductivity of Fiber Reinforced Polymer Composites,” International Communications in Heat and Mass Transfer, Vol. 27, No. 2, 2000, pp. 253-261. doi:10.1016/S0735-1933(00)00106-8
[17] J. C. Halpin and J. L. Kardos, “The Halpin-Tsai Equations: A Review,” Polymer Engineering and Science, Vol. 16, No. 5, 1976, pp. 344-352. doi:10.1002/pen.760160512
[18] G. S. Springer and S. W. Tsai, “Thermal Conductivity of Unidirectional Materials,” Journal of Composte Materials, Vol. 1, No. 2, 1967, pp. 166-173. doi:10.1177/002199836700100206
[19] S. C. Cheng and R. I. Vachon, “The Prediction of the Thermal Conductivity of Two Andthree Phase Solid Heterogeneous Mixtures,” International Journal of Heat & Mass Transfer, Vol. 12, No. 3, 1969, pp. 249-264. doi:10.1016/0017-9310(69)90009-X
[20] M. Zimmer, “Thermal Management Composites Utilizing Carbon Nanotubes and High-Conducting Carbon Fibers: Design, Fabrication and Characterization,” Ph.D. Thesis, Florida State University, Tallahassee, 2009.
[21] Md. R. Islam and A. Pramila, “Thermal Conductivity of Fiber Reinforced Composites by FEM,” Journal of Composite Materials, Vol. 33, No. 18, 1999, pp. 1699-1715. doi:10.1177/002199839903301803
[22] Wolfram Mathworld, “Fourier’s Law,” 2009. http://mathworld.wolfram.com
[23] K. Berber and D. Tomanek, “Unusually High Thermal Conductivity of Carbon Nanotubes,” Physical Review Letters, Vol. 84, No. 20, 2000, pp. 4613-4616. doi:10.1103/PhysRevLett.84.4613
[24] J. Hone, M. Whitney, C. Piskoti and A. Zettl, “Thermal Conductivity of Single-Walled Carbon Nanotubes,” Physical Review B, Vol. 59, No. 4, 1999, pp. 2514-2516. doi:10.1103/PhysRevB.59.R2514
[25] P. Kim, L. Shi, A. Majumdar and P. L. McEuen, “Thermal Transport Measurements of Individual Multiwalled Nanotubes,” Physical Review Letters, Vol. 87, No. 21, 2001, Article ID: 215502. doi:10.1103/PhysRevLett.87.215502
[26] G. S. Brady, H. R. Clauser, “Materials Handbook,” 13th Edition, McGraw-Hill Inc., New York, 1991.
[27] A. Bagchi and S. Nomura, “On the Effective Thermal Conductivity of Carbon Nanotube Reinforced Polymer Composites,” Composite Science and Technology, Vol. 66, No. 11-12, 2006, pp. 1703-1712. doi:10.1016/j.compscitech.2005.11.003

  
comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.