Share This Article:

Gold Nanorod, an Optical Probe to Track HIV Infection

Abstract Full-Text HTML XML Download Download as PDF (Size:1715KB) PP. 38-47
DOI: 10.4236/jst.2012.21006    6,161 Downloads   10,456 Views   Citations
Author(s)    Leave a comment


Infectious diseases caused by the human immunodeficiency virus (HIV) remain the leading killers of human beings worldwide, and function to destabilize societies in Africa, Asia and the Middle East. Driven by the need to detect the presence of HIV viral sequence, here we demonstrate that the second order nonlinear optical (NLO) properties of gold nanorods can be used for screening HIV-1 viral DNA sequence without any modification, with good sensitivity (100 pico-molar) and selectivity (single base pair mismatch). The hyper Rayleigh Scattering (HRS) intensity increases 58 times when label-free 145-mer, ss-gag gene DNA, was hybridized with 100 pM target DNA. The mechanism of HRS intensity change has been discussed with experimental evidence for higher multipolar contribution to the NLO response of gold nanorods.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

S. Kumar, "Gold Nanorod, an Optical Probe to Track HIV Infection," Journal of Sensor Technology, Vol. 2 No. 1, 2012, pp. 38-47. doi: 10.4236/jst.2012.21006.


[1] P. Alivisatos, “The Use of Nanocrystals in Biological Detection,” Nature Biotechnology, Vol. 22, No. 1, 2004, pp. 47-52. doi:10.1038/nbt927
[2] E. Katz and I. Willner, “Integrated Nanoparticle-Biomolecule Hybrid Systems: Synthesis, Properties, and Applications,” Angewandte Chemie International Edition, Vol. 43, No. 45, 2004, pp. 6042-6108. doi:10.1002/anie.200400651
[3] J. Xiang, W. Lu, Y. Hu, Y. Wu, H. Yan and C. M. Lieber, “Ge/Si Nanowire Heterostructures as High-Performance Field-Effect Transistors,” Nature, Vol. 441, 2006, pp. 489. doi:10.1038/nature04796
[4] J. M. Nam, C. S. Thaxton and C. A. Mirkin, “Nanoparticle-Based Bio-Bar Codes for the Ultrasensitive Detection of Proteins,” Science, Vol. 301, 2003, pp. 1884-1886.
[5] X. Gao, Y. Cui, R. M. Levenson, L. W. K. Chung and S. Nie, “In Vivo Cancer Targeting and Imaging with Semiconductor Quantum Dots,” Nature Biotechnology, Vol. 22, 2004, pp. 969-976. doi:10.1038/nbt994
[6] P. C. Ray, “Diagnostics of Single Base-Mismatch DNA Hybridization on Gold Nanoparticles by Using the Hyper-Rayleigh Scattering Technique,” Angewandte Chemie International Edition, Vol. 45, No. 7, 2006, pp. 1151- 1154. doi:10.1002/anie.200503114
[7] L.-Q. Chu, R. F?rch and W. Knoll, “Surface Plasmon- Enhanced Fluorescence Spectroscopy for DNA Detection Using Fluorescently Labeled PNA as ‘DNA Indicator’,” Angewandte Chemie International Edition, Vol. 46, 2007, pp. 4944-4947.
[8] T. N. Grossmann, L. R?glin and O. Seitz, “Triplex Molecular Beacons as Modular Probes for DNA Detection,” Angewandte Chemie International Edition, Vol. 46, No. 27, 2007, pp. 5223-5226. doi:10.1002/anie.200700289
[9] X. Huang, I. H. El-Sayed, W. Qian and M. A. El-Sayed, “Cancer Cell Imaging and Photothermal Therapy in the Near-Infrared Region by Using Gold Nanorods,” Journal of the American Chemical Society, Vol. 128, No. 6, 2006, pp. 2115-2120. doi:10.1021/ja057254a
[10] X. Huang, I. H. El-Sayed, W. Qian and M. A. El-Sayed, “Cancer Cells Assemble and Align Gold Nanorods Conjugated to Antibodies to Produce Highly Enhanced, Sharp, and Polarized Surface Raman Spectra: A Potential Cancer Diagnostic Marker,” Nano Letters, Vol. 7, No. 6, 2007, pp. 1591-1597. doi:10.1021/nl070472c
[11] G. H. Chan, J. Zhao, E. M. Hicks, G. C. Schatz and R. P. Van Duyne, “Plasmonic Properties of Copper Nanoparticles Fabricated by Nanosphere Lithography,” Nano Letters, Vol. 7, No. 7, 2007, pp. 1947-1952. doi:10.1021/nl070648a
[12] B. P. Khanal and E. R. Zubarev, “Oxidative Addition of Phenylacetylene through C-H Bond Cleavage to Form the MgII-Dpp-Bian Complex,” Angewandte Chemie International Edition, Vol. 46, No. 27, 2007, pp. 5223-5226. doi:10.1002/anie.200700289
[13] C.-C. Huang, Z. Yang, K.-H. Lee and H.-T. Chang, “Synthesis of Highly Fluorescent Gold Nanoparticles for Sensing Mercury(II),” Angewandte Chemie International Edition, Vol. 46, No. 36, 2007, pp. 6824-6828. doi:10.1002/anie.200700803
[14] P. C. Ray, A. Fortner and G. K. Darbha, “Gold Nanoparticle Based FRET Asssay for the Detection of DNA Cleavage,” Journal of Physical Chemistry B, Vol. 110, 2006, pp. 20745-20748.
[15] T. L. Jennings, M. P. Singh and G. F. Strouse, “Fluorescent Lifetime Quenching near d = 1.5 nm Gold Nanoparticles: Probing NSET Validity,” Journal of the American Chemical Society, Vol. 128, No. 16, 2006, pp. 5462-5467. doi:10.1021/ja0583665
[16] P. C. Ray, G. K. Darbha, A. Ray and W. Hardy, “A Gold-Nanoparticle-Based Fluorescence Resonance Energy Transfer Probe for Multiplexed Hybridization Detection: Accurate Identification of Bio-Agents DNA,” Nanotechnology, Vol. 18, No. 37, 2007, pp. 375504- 375510. doi:10.1088/0957-4484/18/37/375504
[17] L. Fabris, M. Dante, G. Braun, S. J. Lee, N. O. Reich, M. Moskovits, T.-Q. Nguyen and G. C. Bazan, “A Heterogeneous PNA-Based SERS Method for DNA Detection,” Journal of the American Chemical Society, Vol. 129, No. 19, 2007, pp. 6086-6087. doi:10.1021/ja0705184
[18] S. Lal, N. K. Grady, G. P. Goodrich and N. J. Halas, “Profiling the Near Field of a Plasmonic Nanoparticle with Raman-Based Molecular Rulers,” Nano Letters, Vol. 6, No. 10, 2006, pp. 2338-2343. doi:10.1021/nl061892p
[19] N. J. Durr, T. Larson, D. K. Smith, B. A. Korgel, K. Sokolov and A. B. Yakar, “Two-Photon Luminescence Imaging of Cancer Cells Using Molecularly Targeted Gold Nanorods,” Nano Letters, Vol. 7, No. 4, 2007, pp. 941-945. doi:10.1021/nl062962v
[20] S. Satyabrata and T. K. Mandal, “Tryptophan-Based Peptides to Synthesize Gold and Silver Nanoparticles: A Mechanistic and Kinetic Study,” Chemistry—A European Journal, Vol. 27, 2007, pp. 3160-3168.
[21] J. Strzalka, T. Xu, A. Tronin, S. P. Wu, I. Miloradovic, I. Kuzmenko, T. Gog, M. J. Therien and J. K. Blasie, “Structural Studies of Amphiphilic 4-Helix Bundle Peptides Incorporating Designed Extended Chromophores for Nonlinear Optical Biomolecular Materials,” Nano Letters, Vol. 6, No. 11, 2006, pp. 2395-2405. doi:10.1021/nl062092h
[22] I. Russier-Antoine, E. Benichou, G. Bachelier, C. Jonin and P. F. Brevet, “Multipolar Contributions of the Second Harmonic Generation from Silver and Gold Nanoparticles,” Journal of Physical Chemistry C, Vol. 111, No. 26, 2007, pp. 9044-9048. doi:10.1021/jp0675025
[23] K. Clays and A. Persoons, “Hyper-Rayleigh Scattering in Solution,” Physical Review Letters, Vol. 66, No. 23, 1991, pp. 2980-2983. doi:10.1103/PhysRevLett.66.2980
[24] G. Hennrich, M. T. Murillo, P. Prados, H. Al-Saraierh, A. El-Dali, D. W. Thompson, J. Collins, P. E. Georghiou, A. Teshome, I. Asselberghs and K. Clays, “Alkynyl Expanded Donor-Acceptor Calixarenes: Geometry and Second-Order Nonlinear Optical Properties,” Chemistry—A European Journal, Vol. 13, No. 27, 2007, pp. 7753-7761. doi:10.1002/chem.200700615
[25] S. Kujala, B. K. Canfield and M. Kauranen, “Multipole Interference in the Second-Harmonic Optical Radiation from Gold Nanoparticles,” Physical Review Letters, Vol. 98, No. 16, 2007, pp. 167403-167406. doi:10.1103/PhysRevLett.98.167403
[26] B. J. Coe, J. A. Harris, L. A. Jones, B. S. Brunschwig, K. Song, K. Clays, J. Garin, J. Orduna, S. J. Coles and M. B. Hursthouse, “Hursthouse, Syntheses and Properties of Two-Dimensional Charged Nonlinear Optical Chromophores Incorporating Redox-Switchable cis-Tetraammin- eruthenium(II) Centers,” Journal of the American Chemical Society, Vol. 127, No. 13, 2005, pp. 4845-4859. doi:10.1021/ja0424124
[27] L. Viau, S. Bidault, O. Maury, S. Brasselet, I. Ledoux, J. Zyss, E. Ishow, K. Nakatani and H. Le Bozec, “All-Optical Orientation of Photoisomerizable Octupolar Zinc(II) Complexes in Polymer Films,” Journal of the American Chemical Society, Vol. 126, No. 27, 2004, pp. 8386-8387. doi:10.1021/ja048143z
[28] C. A. Mirkin, R. L. Letsinger, R. C. Mucic and J. J. Storhoff, “Emergence of Simple-Cell Receptive Field Properties by Learning a Sparse Code for Natural Images,” Nature, Vol. 382, 1996, pp. 607-610. doi:10.1038/382607a0
[29] N. J. Durr, T. Larson, D. K. Smith, B. A. Korgel, K. Sokolov and A. Ben-Yakar, “Two-Photon Luminescence Imaging of Cancer Cells Using Molecularly Targeted Gold Nanorods,” Nano Letters, Vol. 7, No. 4, 2007, pp. 941-945. doi:10.1021/nl062962v
[30] C. Sonnichsen and A. P. Alivisatos, “Gold Nanorods as Novel Nonbleaching Plasmon-Based Orientation Sensors for Polarized Single-Particle Microscopy,” Nano Letters, Vol. 5, No. 2, 2005, pp. 301-304. doi:10.1021/nl048089k
[31] P. K. Jain, S. K. Lee, I. H. El-Sayed and M. A. El-Sayed, “Calculated Absorption and Scattering Properties of Gold Nanoparticles of Different Size, Shape, and Composition: Applications in Biological Imaging and Biomedicine,” Journal of Physical Chemistry B, Vol. 110, No. 14, 2006, pp. 7238. doi:10.1021/jp057170o
[32] H. F. Wang, T. B. Huff, D. A. Zweifel, W. He, P. S. Low, A. Wei and J.-X. Cheng, “In Vitro and in Vivo Two- Photon Luminescence Imaging of Single Gold Nanorods,” Proceedings of the National Academy of Sciences USA, Vol. 102, No. 44, 2005, pp. 15752-15756. doi:10.1073/pnas.0504892102
[33] T. Yamada, Y. Iwasaki, H. Tada, H. Iwabuki, M. Chuah, T. VandenDriessche, H. Fukuda, A. Konodo, M. Ueda, M. Seno, K. Tanizawa and S. Kuroda, “Nanoparticles for the delivery of genes and drugs to human hepatocytes,” Nature Biotechnology, Vol. 21, 2003, pp. 885-890. doi:10.1038/nbt843
[34] C. J. Murphy, T. K. Sau, A. M. Gole, C. J. Orendroff, J. Gao, L. Gou, S. E. Hunyadi and T. Li, “Anisotropic Metal Nanoparticles: Synthesis, Assembly, and Optical Appli- cations,” Journal of Physical Chemistry B, Vol. 109, No. 29, 2005, pp. 13857-13870. doi:10.1021/jp0516846
[35] G. K. Darbha, A. Ray and P. C. Ray, “Gold Nanoparticle- Based Miniaturized Nanomaterial Surface Energy Transfer Probe for Rapid and Ultrasensitive Detection of Mercury in Soil, Water, and Fish,” ACS Nano, Vol. 1, No. 3, 2007, pp. 208-214. doi:10.1021/nn7001954
[36] V. S. Tiwari, T. Oleg, G. K. Darbha, W. Hardy, J. P. Singh and P. C. Ray, “Non-Resonance SERS Effects of Silver Colloids with Different Shapes,” Chemical Physics Letters, Vol. 446, No. 1-3, 2007, pp. 77-82. doi:10.1016/j.cplett.2007.07.106
[37] H. Kang, G. Evmenenko, P. Dutta, K. Clays, K. Song and T. J. Marks, “X-Shaped Electro-optic Chromophore with Remarkably Blue-Shifted Optical Absorption. Synthesis, Characterization, Linear/Nonlinear Optical Properties, Self-Assembly, and Thin Film Microstructural Characteristics,” Journal of the American Chemical Society, Vol. 128, No. 18, 2006, pp. 6194-6205. doi:10.1021/ja060185v
[38] P. Galletto, P. F. Brevet, H. H. Girault, R. Antoine and M. Broyer, “Enhancement of the Second Harmonic Response by Adsorbates on Gold Colloids: The Effect of Aggregation,” Journal of Physical Chemistry B, Vol. 103, No. 41, 1999, pp. 8706-8710. doi:10.1021/jp991937t
[39] J. P. Novak, L. C. Brousseau, F. W. Vance, R. C. Johnson, B. I. Lemon, J. T. Hupp and D. L. Feldheim, “Nonlinear Optical Properties of Molecularly Bridged Gold Nanoparticle Arrays,” Journal of the American Chemical Society, Vol. 122, No. 48, 2000, pp. 12029-12030. doi:10.1021/ja003129h
[40] C. Hubert, A. Rumyantseva, G. Lerondel, J. Grand, S. Kostcheev, L. Billot, A. Vial, R. Bachelot, P. Royer, S.-H. Chang, S. K. Gray, G. P. Wiederrecht and G. C. Schatz, “Near-Field Photochemical Imaging of Noble Metal Nano- structures,” Nano Letters, Vol. 5, No. 4, 2005, pp. 615- 619. doi:10.1021/nl047956i
[41] G. Mie, “Beitr?ge zur Optik Trüber Medien, Speziell Kolloidaler Metall?sungen,” Annalen der Physik, Vol. 330, No. 3, 1908, pp. 377-445. doi:10.1002/andp.19083300302
[42] J. L. Oudar, “Optical Nonlinearities of Conjugated Molecules. Stilbene Derivatives and Highly Polar Aromatic Compounds,” Journal of Physical Chemistry, Vol. 67, No. 2, 1977, pp. 446-454. doi:10.1063/1.434888

comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.