Investigation on Temperature Sensing of Nanostructured Zinc Oxide Synthesized via Oxalate Route


A detailed study is reported of the synthesis and characterization of n- type ZnO nanomaterial and its application as temperature sensor. The ZnO nanomaterial has been synthesized through pyrolysis of the oxalate produced by a conventional precipitation method. It is synthesized by flash heating the oxalate at 450°C for 15 min. Pellet of this material was prepared and used as a sensing element. The variations in resistance of sensing pellet at different temperatures were recorded. The relative resistance was decreased linearly with increasing temperatures over the range, 120°C - 260°C. The activation energy of ZnO calculated from Arrhenius plot was found 1.12 eV. Temperature response in terms of the relative variation, ΔR, of sensor resistance to a given temperature was measured. Scanning electron micrograph of the sensing element has been studied. Pellet of the ZnO is comprised of nanorods of varying diameters and different lengths. Diameter of ZnO nanorods varies from 75 to 300 nm. X-ray diffraction pattern of the sensing element reveal their nano-crystalline nature. Optical characterization of the sensing material was carried out by UV-visible spectrophotometer. By UV-Vis spectra, the estimated value of band gap of ZnO was found 4.7 eV.

Share and Cite:

R. Srivastava, "Investigation on Temperature Sensing of Nanostructured Zinc Oxide Synthesized via Oxalate Route," Journal of Sensor Technology, Vol. 2 No. 1, 2012, pp. 8-12. doi: 10.4236/jst.2012.21002.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] S. L. Bai, J. W. Hu, et al., “Quantum-Sized ZnO Nanoparticles: Synthesis, Characterization and Sensing Properties for NO2,” Journal of Materials Chemistry, Vol. 21, No. 33, 2011, pp. 12288-12294. doi:10.1039/c1jm11302j
[2] J. Kim and K. Yong, “Mechanism Study of ZnO Nanorod-Bundle Sensors for H2S Gas Sensing,” Journal of Physical Chemistry C, Vol. 115, No. 15, 2011, pp. 7218- 7224. doi:10.1021/jp110129f
[3] X.-L. Yu, H.-M. Ji, H.-L. Wang, J. Sun and X.-W. Du, “Synthesis and Sensing Properties of ZnO/ZnS Nanocages,” Nanoscale Research Letters, Vol. 5, 2010, pp. 644-648. doi:10.1007/s11671-010-9528-y
[4] Q. Wei, G. Meng, X. An, Y. Hao and L. Zang, “Temperature Controlled Growth of ZnO Nanostructure: Branched Nanobelts and Wide Nanosheets,” Nanotechnology, Vol. 16, No. 11, 2005, pp. 2561-2566. doi:10.1088/0957-4484/16/11/016
[5] C. Xu, M. Kim, J. Chun and D. E. Kim, “The Selectively Manipulated Growth of Crystalline ZnO Nanostructures,” Nanotechnology, Vol. 16, No. 10, 2005, pp. 2104-2110. doi:10.1088/0957-4484/16/10/022
[6] L. Saad and M. Riad, “Characterization of Various Zinc Oxide Catalysts and Their Activity in the Dehydration- Dehydrogenation of Isobutanol,” Journal of the Serbian Chemical Society, Vol. 73, No. 6, 2008, pp. 997-1009. doi:10.2298/JSC0810997S
[7] S. K. Shukla, G. K. Parashar, P. Misra, B. C. Yadav, R. K. Shukla, A. Srivastava, F. Deva and G. C. Dubey, “On Exploring Sol-Gel Deposited ZnO Thin Film as Humidity Sensor: An Optical Fiber Approach,” Chemical Sensors, Vol. 20, 2004, pp. 546-547.
[8] X. Zhou, T. Jiang, J. Zhang, X. Wang and Z. Zhu, “Humidity Sensor Based on Quartz Tuning Fork Coated with Sol-Gel-Derived Nanocrystalline Zinc Oxide Thin Film,” Sensors and Actuators B, Vol. 123, No. 1, 2007, pp. 299- 305. doi:10.1016/j.snb.2006.08.034
[9] W. Wei, B. Suo, C. Nuanyang, M. Fei, W. Zhiyang, Q. Yong and X. Erqing, “Increasing UV Photon Response of ZnO Sensor with Nanowires Array,” Science of Advanced Materials, Vol. 2, No. 3, 2010 pp. 402-406. doi:10.1166/sam.2010.1103
[10] N. Kavasoglu and M. Bayhan, “Air Moisture Sensing Properties of ZnCr2O4,” Turkish Journal of Physics, Vol. 29, 2005, pp. 249-255.
[11] Y. Zhang, K. Yu, S. Ouyang, L. Luo, H. Hu, Q. Zhang and Z. Zhu, “Detection of Humidity Based on Quartz Crystal Microbalance Coated with ZnO Nanostructure Films,” Physica B: Condensed Matter, Vol. 368, No. 1-4, 2005, pp. 94-99. doi:10.1016/j.physb.2005.07.001
[12] L. Saad and M. Riad, “Characterization of Various Zinc Oxide Catalysts and Their Activity in the Dehydration- Dehydrogenation of Isobutanol,” Journal of the Serbian Chemical Society, Vol. 73, No. 10, 2008, pp. 997-1009. doi:10.2298/JSC0810997S
[13] B. C. Yadav, R. Srivastava, C. D. Dwivedi and P. Pramanik, “Moisture Sensor Based ZnO Nanomaterial Synthesized through Oxalate Route,” Sensors and Actuators B, Vol. 131, No. 1, 2008, pp. 216-222. doi:10.1016/j.snb.2007.11.013
[14] C. S. Rout, S. Harikrishna, S. R. C. Vivekchand, A. Govindaraj, C. N. R. Rao, “Hydrogen and Ethanol Sensors Based on ZnO Nanorods, Nanowires and Nanotubes,” Chemical Physics Letters, Vol. 418, No. 4-6, 2006, pp. 584-590. doi:10.1016/j.cplett.2005.11.040
[15] H. J. Lim, D.Y. Lee and Y. J. Oh, “Gas Sensing Properties of ZnO Thin Films Prepared by Microcontact Printing,” Sensors and Actuators A, Vol. 125, No. 2, 2006 pp. 405-410. doi:10.1016/j.sna.2005.08.031
[16] Z. P. Sun, L. Liu, L. Zhang and D. Z. Jia, “Rapid Synthesis of ZnO Nano-Rods by One-Step Room-Temperature, Solid-State Reaction and Their Gas-Sensing Properties,” Nanotechnology, Vol. 17, No. 9, 2006, pp. 2266-2270. doi:10.1088/0957-4484/17/9/032
[17] J. F. Chang, H. H. Kuo, I. C. Leu and M. H. Hon, “The Effect of Thickness and Operation Temperature of ZnO: Al Thin Film CO Gas Sensor,” Sensors and Actuators B, Vol. 84, No. 2-3, 2002, pp. 258-264. doi:10.1016/S0925-4005(02)00034-5
[18] J. Xu, Y. Chen, D. Chen and J. Shen, “Hydrothermal Synthesis and Gas Sensing Characters of ZnO Nanorods,” Sensors and Actuators B, Vol. 113, No. 1, 2006, pp. 526- 531. doi:10.1016/j.snb.2005.03.097
[19] N. Wu, M. Zhao, J. G. Zheng, C. Jiang, B. Myers, S. Le, M. Chyu and S. X. Mao, “Porous CuO-ZnO Nanocomposite for Sensing Electrode of High Temperature CO Solid- State Electrochemical Sensor,” Nanotechnology, Vol. 16, No. 12, 2005, pp. 2878-2881. doi:10.1088/0957-4484/16/12/024
[20] Q. Zhang, C. Xie, S. Zhang, A. Wang, B. Zhu, L. Wang and Z. Yang, “Identification and Pattern Recognition Analysis of Chinese Liquors by Doped Nano ZnO Gas Sensor Array,” Sensors and Actuators B, Vol. 110, No. 2, 2005, pp. 370-376. doi:10.1016/j.snb.2005.02.017
[21] V. R. Shinde, T. P. Gujar and C. D. Lokhande, “LPG Sensing Properties of ZnO Fims Prepared by Spray Pyrolysis Method: Effect of Molarity of Precursor Solution,” Sensors and Actuators B, Vol. 120, No. 2, 2007, pp. 551- 559. doi:10.1016/j.snb.2006.03.007
[22] H. Karami, “Investigation of Sol-Gel Synthesized CdO-ZnO Nanocomposite for CO Gas Sensing,” Int. J. Electrochem. Sci, Vol. 5, 2010, pp. 720-730
[23] K. C. Dubey, K. P. Misra, A. Srivastava, A. Srivastava and R. K. Shukla, “Pulsed Laser Deposited Nanocrystalline Zinc Oxide Films as Temperature Sensor,” Proceeding of 13th National Seminar on Physics and Technology of Sensors, 2008, C-18-1-2.
[24] H. T. Wang, B. S. Kangand and F. Ren, “Hydrogen- Selective Sensing at Room Temperature with ZnO Nanorods,” Applied Physics Letters, Vol. 86, No. 24, 2005, pp. 243503. doi:10.1063/1.1949707
[25] J. H. He, S. Singamaneni, C. H Ho, Y. H. Lin, M. E McConney and V. V Tsukruk, “A Thermal Sensor and Switch Based on a Plasma Polymer/ZnO Suspended Na- nobelt Bimorph Structure,” Nanotechnology, Vol. 20, No. 6, 2009, pp. 065502-065506. doi:10.1088/0957-4484/20/6/065502
[26] C. Sui, J. Xia, H. Wang, T. Xu, B. Yan and Y. Liu, “Optical Temperature Sensor Based on ZnO Thin Film’s Temperature-Dependent Optical Properties,” Review of Scientific Instruments, Vol. 82, No. 8, 2011, pp. 084901- 084903. doi:10.1063/1.3616361
[27] B. C. Yadav, S. Singh and A. Yadav, “Nanonails Structured Ferric Oxide Thick Film as Room Temperature Liquefied Petroleum Gas (LPG) Sensor,” Applied Surface Science, Vol. 257, No. 6, 2011, pp. 1960-1966. doi:10.1016/j.apsusc.2010.09.035

Copyright © 2022 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.