Molecular Diversity of Kenyan Lablab Bean (Lablab purpureus (L.) Sweet) Accessions Using Amplified Fragment Length Polymorphism Markers

DOI: 10.4236/ajps.2012.33037   PDF   HTML     5,737 Downloads   10,044 Views   Citations

Abstract

Lablab purpureus (L.) Sweet is a multipurpose legume that combines use as human food and animal feed in addition to serving as a cover crop for soil conservation. In this work, molecular diversity in Lablab purpureus was assessed using amplified fragment length polymorphism markers on fifty Kenyan lablab accessions obtained from farmers’ fields and the Kenya National gene bank. One hundred and eighty polymorphic bands were revealed using fifteen selective primer pairs. The overall mean expected heterozygosity (He) for the five populations was 0.189. Estimates of components of molecular variance revealed that most of the genetic variation resided within populations (99%) and only 1% variance was among the populations, while Principal Coordinate Analysis showed an overlap between accessions from different geographic origins. The UPGMA cluster analysis generated from the distance matrix of the 50 assayed accessions, revealed low diversity among most of the accessions. The low diversity observed may be due to the narrow genetic base for breeding stocks, and extensive exchange of germplasm among smallholder farmers across the country. Results obtained from this study are discussed in light of the need to enhance the genetic management and improvement of this multipurpose crop species.

Share and Cite:

E. N. Kimani, F. N. Wachira and M. G. Kinyua, "Molecular Diversity of Kenyan Lablab Bean (Lablab purpureus (L.) Sweet) Accessions Using Amplified Fragment Length Polymorphism Markers," American Journal of Plant Sciences, Vol. 3 No. 3, 2012, pp. 313-321. doi: 10.4236/ajps.2012.33037.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] L. M. Engle and N. C. Altoveris (Eds.), “Collection, Conservation and Utilization of Indigenous Vegetables,” Asian Vegetable Research and Development Centre (AVRDC), Shanhua, 2000, p. 142.
[2] D. G. Cameron, “Tropical and Subtropical Pasture Legumes,” Queensland Agricultural Journal, Vol. 114, No. 2, 1988, pp. 110-113.
[3] J. G. Mureithi, C. K. K. Gachene and J. L. W. Wamuongo, “Legume Cover Crops Research in Kenya: Experiences of the Legume Research Network Project,” KARI Technical Note Series, No. 12, 2003.
[4] B. C. Pengelly and S. N. Lisson, “Strategies for Using Improved Forages to Enhance Production in Bali Cattle,” In: K. Entwistle and D. R. Lindsay, Eds., Proceedings of a Workshop Australian Centre for International Agricultural Research (ACIAR), Bali, 4-7 February 2002, pp. 29-33.
[5] P. M. Maundu, G. W. Ngugi and C. H. S. Kabuye (Eds.), “Lablab purpureus,” In: Traditional Food Plants of Kenya, English Press Ltd., Nairobi, 1999, pp. 154-155.
[6] B. L. Maass, M. R. Knox, S. C. Venkatesha, T. A. Tefera, S. Ramme and B. C. Pengelly, “Lablab purpureus—A Crop Lost for Africa?,” Tropical Plant Biology, Vol. 3, No. 3, 2010, pp. 123-135.
[7] S. McCouch, “Diversifying Selection in Plant Breeding,” PLoS Biology, Vol. 2, No. 10, 2004, pp. e347-e306. doi:10.1371/journal.pbio.0020347
[8] P. S. Virk, B. V. Ford-Lloyd, M. T. Jackson and H. J. Newbury, “Use of RAPD for the Study of Diversity within Plant Germplasm Collections,” Heredity, Vol. 74, No. 2, 1995, pp. 170-179. doi:10.1038/hdy.1995.25
[9] Z. P. Song, X. Xu, B. Wang, and J. K. Chen, “Genetic diversity in the northernmost Oryzarufipogon populations estimated by SSR markers,” Theoretical and Applied Genetics, Vol. 107, 2003, pp. 1492-1499. doi:10.1007/s00122-003-1380-3
[10] M. L. Wang, A. G. Gillaspie, M. L. Newman, R. E. Dean, R. N. Pittman, J. B Morris and G. A. Pederson, “Transfer of Simple Sequence Repeat (SSR) Markers across the Legume Family for Germplasm Characterization and Evaluation,” Plant Genetic Resources, Vol. 2, No. 2, 2004, pp. 107-119. doi:10.1079/PGR200441
[11] M. L. Wang, J. B. Morris, N. A. Barkley, R. E. Dean, T. M. Jenkins and G. A. Pederson, “Evaluation of Genetic Diversity of the USDA Lablab purpureusgermplasm Collection Using Simple Sequence Repeat Markers,” Journal of Horticultural Science Biotechnology, Vol. 82, No. 4, 2007, pp. 571-578.
[12] S. C. Venkatesha, M. B. Gowda, P. Mahadevu, A. M. Rao, D.-J. Kim, T. H. N. Ellis and M. R. Knox, “Genetic Diversity within Lablab purpureus and the Application of Gene-Specific Markers from a Range of Legume Species,” Plant Genetic Resources: Characterization and Utilization, Vol. 5, No. 3, 2007, pp. 154-171. doi:10.1017/S1479262107835659
[13] C. J. Liu, “Genetic Diversity and Relationships among Lablab purpureus Genotypes Evaluated Using RAPD Markers,” Euphytica, Vol. 90, No. 1, 1996, pp. 115-119.
[14] N. Sultana, Y. Ozaki and H. Okubo, “The Use of RAPD Markers in Lablab Bean (Lablab purpureus (L.) Sweet) Phylogeny,” Bulletin of Institute of Tropical Agricultural Kyushu University, Vol. 23, 2000, pp. 45-51.
[15] Z. Tian, S. Wang, W. Wang and L. Liu, “Study on the Diversity of Germplasm Resources of Dolichos lablab (L.),” Natural Science Journal of Hainan University, Vol. 23, No. 1, 2005, pp. 53-60.
[16] B. N. Gnanesh, S. M. Reddi and R. K. Raja, “Genetic Diversity Analysis of Field Bean (Lablab purpureus (L.) Sweet) through RAPD Markers,” BARC Golden Jubilee &DAE-BRNS Life Sciences Symposium on Trends in Research and Technologies in Agriculture and Food Sciences at Bhabha Atomic Research Centre (BARC), Mumbai, 18-20 December 2006, p. 78.
[17] T. Tefera, M. Oluoch and B. L. Maass, “Identifying Vegetable Lablab Types by Participatory assessment: Panelists’ Perceptions of Morphological Traits and Organoleptic Taste Assessment,” The 13th Australian Society of Agronomy Conference, Perth, 11-14 September, 2006.
[18] P. Patil, S. C. Venkatesha, T. H. Ashok, T. K. S. Gowda, Byre and M. Gowda, “Genetic Diversity in Field Bean as Revealed with AFLP Markers,” Journal of Food Legumes, Vol. 22, No. 1, 2009, pp. 18-22.
[19] B. L. Maass, R. H. Jamnadass, J. Hanson and B. C. Pengelly, “Determining Sources of Diversity in Cultivated and wild Lablab purpureusrelated to Provenance of Accession by Using Amplified Fragment Length Polymorphism,” Genetic Resources and Crop Evolution, Vol. 52, No. 6, 2005, pp. 683-695. doi:10.1007/s10722-003-6019-3
[20] M. Zabeau, European Patent Application, No. 92402629.7, 1993.
[21] P. Vos, R. Hogers, M. Bleeker, M. Rijans, T. Van de Lee, M. Hornes, A. Frijters, J. Pt, J. Peleman, M. Kuiper and M. Zabeau, “AFLP: A New Technique for Fingerprinting,” Nuclei Acids Research, Vol. 23, No. 21, 1995, pp. 4407-4414. doi:10.1093/nar/23.21.4407
[22] N. J. Gawel and R. L. Jarret, “A Modified CTAB DNA Extraction Procedure for Musa and Ipomea,” Plant Molecular Biology Reports, Vol. 9, No. 3, 1991, pp. 262-266. doi:10.1007/BF02672076
[23] R. Waugh, “Lab Protocols,” Plant Genome Analysis Group, Cell and Molecular Genetics Department, Scottish Crop Research Institute, Dundee, 1994, pp. 52-57.
[24] IAEA, “Mutant Accession Characterization Using Molecular Markers—A Manual,” International Atomic Energy Agency Training Course Series 19, Vienna, 2002, pp. 7.1-7.7.
[25] CIMMYT, “Laboratory Protocols, CIMMYT Applied Molecular Genetics Laboratory,” 3rd Edition, Mexico City, 2005, pp. 41-47.
[26] R. Peakall and P. E. Smouse, “GENALEX 6: Genetic Analysis in Excel. Population Genetic Software for Teaching and Research,” Molecular Ecology Notes, Vol. 6, No. 1, 2006, pp. 288-295. doi:10.1111/j.1471-8286.2005.01155.x
[27] M. Nei, “Estimation of Average Heterozygosity and Genetic Distance from a Small Number of Individuals,” Genetics, Vol. 89, No. 3, 1978, pp. 583-590.
[28] P. H. A. Sneath and R. R. Sokal, “Numerical Taxonomy,” Freeman, San Francisco, 1973.
[29] F. C. Yeh, R. T. Yang, J. Boyle, Z. Ye and J. M. Xiyan, “PopGene32, Microsoft Windows-Based Freeware for Population Genetic Analysis,” Version 1.32, Molecular Biology and Biotechnology Centre, University of Alberta, Edmonton, 2000.
[30] B. K. Chakravarthi and R. Naravaneni, “SSR Marker Based DNA Fingerprinting and Diversity Study in Rice (Oryza sativa L.),” African Journal of Biotechnology, Vol. 5, No. 9, 2006, pp. 684-688.
[31] V. Kumar, S. Sharma, S. Kero, S. Sharma, A. K. Sharma, M. Kumar and K. V. Bhat, “Assessment of Genetic Diversity in Common Bean (Phaseolus vulgaris L.) Germplasm using Amplified Fragment Length Polymorphism (AFLP),” Scientia Horticulturae, Vol. 116, No. 2, 2008, pp. 138-143. doi:10.1016/j.scienta.2007.12.001
[32] S. A. Mohammadi and B. M. Prasanna, “Analysis of Genetic Diversity in Crop Plants—Salient Statistical Tools and Considerations,” Crop Science, Vol. 43, No. 4, 2003, pp. 1235-1248. doi:10.2135/cropsci2003.1235
[33] G. N. Ude, W. J. Kenworthy, J. M. Costa, P. B. Cregan and J. Alvernaz, “Genetic Diversity of Soybean Cultivars from China, Japan, North America, and North American Ancestral Lines Determined by Amplified Fragment Length Polymorphism,” Crop Science, Vol. 43, No. 5, 2003, pp. 1858-1867. doi:10.2135/cropsci2003.1858
[34] M. Maras, J. B. Sustar-vozli, Javornik and V. Megli, “The Efficiency of AFLP and SSR Markers in Genetic Diversity Estimation and Gene Pool Classification of Common Bean (Phaseolus vulgaris L.),” Acta Agriculturae Slovenica, Vol. 91, No. 1, 2008, pp. 87-96. doi:10.2478/v10014-008-0009-2
[35] G. Sarikamis, F. Yasar, M. Bakir, K. Kazan and A. Ergül. “Genetic Characterization of Green Bean (Phaseolus vulgaris) Genotypes from Eastern Turkey,” Genetics and Molecular Research, Vol. 8, No. 3, 2009, pp. 880-887. doi:10.4238/vol8-3gmr605
[36] J. G. Gwag, J. W. Chung, H. K. Chung, J. H. Lee, K. H. Ma, A. Dixit, Y. J. Park, E. G. Cho, T. S Kim and S. H. Lee, “Characterization of New Microsatellite Markers in Mung Bean, Vigna radiata (L.),” Molecular Ecology Notes, Vol. 6, No. 4, 2006, pp. 1132-1134. doi:10.1111/j.1471-8286.2006.01461.x
[37] F. N. Wachira, J. Tanaka and Y. Takeda, “Genetic Variation and Differentiation in Tea (Camellia sinensis) Accession Revealed by RAPD and AFLP Variation,” Journal of Horticultural Science and Biotechnology, Vol. 76, 2001, pp. 557-563.
[38] Q. Cao, B. R. Lu, H. Xia, J. Rong, F. Sala, A. Spada and F. Grassi, “Genetic Diversity and Origin of Weedy Rice (Oryza sativa f. spontanea) Populations Found in North-Eastern China Revealed by Simple Sequence Repeat (SSR) Markers,” Annals of Botany, Vol. 98, No. 6, 2006, pp. 1241-1252. doi:10.1093/aob/mcl210
[39] P. Zhang, S. Dreisigacker, A. Buerkert, S. Alkhanjari, A. E. Melchinger and M. L. Warburton, “Genetic Diversity and Relationships of Wheat Landraces from Oman Investigated with SSR Markers,” Genetic Resources and Crop Evolution, Vol. 53, No. 7, 2006, pp. 1351-1360. doi:10.1007/s10722-005-4675-1
[40] J. B. Hacker and J. Hanson, “Crop Growth and Development: Reproduction,” In: D. S. Loch and J. E. Ferguson, Eds., Forage Seed Production 2: Tropical and Subtropical Species, Wallingford, CABIN Publishing, 1999, pp. 93-111.

  
comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.