Exact Solution of Dirac Equation with Charged Harmonic Oscillator in Electric Field: Bound States

DOI: 10.4236/jmp.2012.32023   PDF   HTML     6,935 Downloads   15,401 Views   Citations


In some quantum chemical applications, the potential models are linear combination of single exactly solvable potentials. This is the case equivalent of the Stark effect for a charged harmonic oscillator (HO) in a uniform electric field of specific strength (HO in an external dipole field). We obtain the exact s-wave solutions of the Dirac equation for some potential models which are linear combination of single exactly solvable potentials (ESPs). In the framework of the spin and pseudospin symmetric concept, we calculate analytical expressions for the energy spectrum and the corresponding two-component upper- and lower-spinors of the two Dirac particles by using the Nikiforov-Uvarov (NU) method, in closed form. The nonrelativistic limit of the solution is also studied and compared with the other works.

Share and Cite:

S. Ikhdair, "Exact Solution of Dirac Equation with Charged Harmonic Oscillator in Electric Field: Bound States," Journal of Modern Physics, Vol. 3 No. 2, 2012, pp. 170-179. doi: 10.4236/jmp.2012.32023.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] O. L. de Lange and R. E. Raab, “Operator Methods in Quantum Mechanics,” Clarendon, Oxford, 1991.
[2] G. Arfken, “Mathematical Methods for Physicists,” Academic Press, San Diego, 1995.
[3] C.V. Sukumar, “Supersymmetric Quantum Mechanics of One-Dimensional Systems,” Journal of Physics A: Mathe- matical and General, Vol. 18, No. 6, 1985, pp. 2917-2936. doi:10.1088/0305-4470/18/15/020
[4] F. Cooper, A. Khare and U. Sukhatme, “Supersymmetry in Quantum Mechanics,” World Scientific, Singapore, 2001. doi:10.1142/9789812386502
[5] A. F. Nikiforov and V. B. Uvarov, “Special Functions of Mathematical Physics,” Birkh?user, Basel, 1988.
[6] O. Bayrak, I. Boztosun and H. Ciftci, “Exact Analytical Solutions to the Kratzer Potential by the Asymptotic Iteration Method,” International Journal of Quantum Che- mistry, Vol. 107, No. 3, 2007, pp. 540-544. doi:10.1002/qua.21141
[7] W. C. Qiang and S. H. Dong, “Arbitrary l-State Solutions of the Rotating Morse Potential through the Exact Quantization Rule Method,” Physics Letters A, Vol. 363, No. 3, 2007, pp. 169-176. doi:10.1016/j.physleta.2006.10.091
[8] I. Nasser, M. S. Abdelmonem, H. Bahlouli and A. D. Alhaidari, “The Rotating Morse Potential Model for diatomic Molecules in the Tridiagonal J-Matrix Representation: 1. Bound States,” Journal of Physics B: Atomic, Mole- cular and Optical Physics, Vol. 40, No. 21, 2007, pp. 4245-4258. doi:10.1088/0953-4075/40/21/011
[9] R. R. Freeman, N. P. Economou, G. C. Bjorklund and K. T. Lu, “Observation of Electric Field Induced Resonances Above the Ionization Limit in a One Electron Atom,” Physical Review Letters, Vol. 41, No. 21, 1978, pp. 1463- 1467. doi:10.1103/PhysRevLett.41.1463
[10] J. M. Jauch, “The Hyperfine Structure and the Stark Effectof the Ammonia Inversion Spectrum,” Physical Re- view, Vol. 72, No. 8, 1947, pp. 715-723. doi:10.1103/PhysRev.72.715
[11] J. J. Pe?a, M. A. Romero-Romo, J. Morales and J. L. López-Bonilla, “Exactly Solvable Combined Potentials and their Isospectral Partners from SUSY,” International Journal of Quantum Chemistry, Vol. 105, No. 6, 2005, pp. 731- 739. doi:10.1002/qua.20687
[12] E. Witten, “Super-Symmetry and Other Scenarios,” In- ternational Journal of Modern Physics A, Vol. 19, No. 8, 2004, pp. 1259-1264.
[13] H. T. Davis, “Introduction to Nonlinear Differential and Integral Equations,” Dover, New York, 1962.
[14] S. M. Ikhdair, “Rotation and Vibration of Diatomic Mo- lecule in the Spatially Dependent Mass Schr?dinger Equ- ation with Generalized q-Deformed Morse Potential,” Che- mical Physics, Vol. 361, No. 1-2, 2009, pp. 9-17. doi:10.1016/j.chemphys.2009.04.023
[15] S.M. Ikhdair, “An Improved Approximation Scheme for the Centrifugal Term and the Hulthen Potential,” European Physical Journal A, Vol. 39, No. 22, 2009, pp. 307- 314. doi:10.1140/epja/i2008-10715-2
[16] S. M. Ikhdair and R. Sever, “Any l-State Improved Quasi- Exact Analytical Solutions of the Spatially Dependent Mass Klein—Gordon Equation for the Scalar and Vector Hul- then Potential,” Physica Scripta, Vol. 79, No. 3, 2009, Article ID 035002.
[17] S. M. Ikhdair and R. Sever, “Exact Quantization Rule to the Kratzer-Type Potentials: An Application to the Diatomic Molecules,” Journal of Mathematical Chemistry, Vol. 45, No. 4, 2009, pp. 1137-1152. doi:10.1007/s10910-008-9438-8
[18] S. Azevedo, “Harmonic Oscillator in a Space with a Lin- ear Topological Defect,” Physical Letters A, Vol. 288, No. 1, 2001, pp. 33-36. doi:10.1016/S0375-9601(01)00539-4
[19] S. Azevedo, “Influence of the Electric Field on a Particle in a Space with a Disiclination,” International Journal of Quantum Chemistry, Vol. 101, 2005, pp. 127-130. doi:10.1002/qua.20263
[20] Q. W. Chao, “Bound States of the Klein-Gordon and Di- rac Equations for Scalar and Vector Harmonic Oscillator Potentials,” Chinese Physics, Vol. 11, No. 8, 2002, pp. 757-759. doi:10.1088/1009-1963/11/8/301
[21] T.-S. Chen, H.-F. Lü, J. Meng, S.-Q. Zhang and S.-G. Zhou, “Pseudospin Symmetry in Relativistic Framework With Harmonic Oscillator Potential and Woods-Saxon Potential,” Chinese Physical Letters, Vol. 20, No. 3, 2003, pp. 358-361. doi:10.1088/0256-307X/20/3/312
[22] V. I. Kukulin, G. Loyola and M. Moshinsky, “A Dirac Equation with an Oscillator Potential and Spin-Orbit Cou- pling,” Physical Letters A, Vol. 158, No. 1-2, 1991, pp. 19- 22. doi:10.1016/0375-9601(91)90333-4
[23] J. N. Ginocchio, “Relativistic Harmonic Oscillator with Spin Symmetry,” Physical Review C, Vol. 69, 2004, Article ID 034318.
[24] J. N. Ginocchio, “Pseudospin as a Relativistic Symmetry,” Physical Review Letters, Vol. 78, No. 3, 1997, pp. 436-459. doi:10.1103/PhysRevLett.78.436
[25] J. N. Ginocchio, “Relativistic Symmetries in Nuclei and Hadrons,” Physics Report, Vol. 414, No. 4-5, 2005, pp. 165- 261. doi:10.1016/j.physrep.2005.04.003
[26] P. Alberto, M. Fiolhais, M. Malheiro, A. Delfino and M. Chiapparini, “Isospin Asymmetry in the Pseudospin Dynamical Symmetry,” Physical Review Letters, Vol. 86, No. 22, 2001, pp. 5015-5018. doi:10.1103/PhysRevLett.86.5015
[27] P. Alberto, M. Fiolhais, M. Malheiro, A. Delfino and M. Chiapparini, “Pseudospin Symmetry as a Relativistic Dy- namical Symmetry in the Nucleus,” Physical Review C, Vol. 65, No. 3, 2002, Article ID 034307. doi:10.1103/PhysRevC.65.034307
[28] R. Lisboa, M. Malheiro, A. S. de Castro, P. Alberto and M. Fiolhais, “Pseudospin Symmetry and the Relativistic Harmonic Oscillator,” Physical Review C, Vol. 69, 2004, Article ID 024319. doi:10.1103/PhysRevC.69.024319
[29] R. Lisboa, M. Malheiro, A. S. de Castro, P. Alberto and M. Fiolhais, “Perturbative Breaking of the Pseudospin Sym- metry in the Relativistic Harmonic Oscillator,” Interna- tional Journal of Modern Physics D, Vol. 13, No. 7, 2004, pp. 1447-1451. doi:10.1142/S0218271804005675
[30] J. N. Ginocchio, “A Relativistic Symmetry in Nuclei,” Physics Reports, Vol. 315, No. 1, 1999, pp. 231-240. doi:10.1016/S0370-1573(99)00021-6
[31] J.-Y. Guo, X.-Z. Fang and F.-X. Xu, “Pseudospin Sym- metry in the Relativistic Harmonic Oscillator,” Nuclear Physics A, Vol. 757, No. 3-4, 2005, pp. 411-421. doi:10.1016/j.nuclphysa.2005.04.017
[32] A. S. de Castro, P. Alberto, R. Lisboa and M. Malheiro, “Rotating Pseudospin and Spin Symmetries through Charge- Conjugation and Chiral Transformations: The Case of the Relativistic Harmonic Oscillator,” Physical Review C, Vol. 73, 2006, Article ID 054309.
[33] H. Ak?ay and C. Tezcan, “Exact Solutions of the Dirac EquationWith Harmonic Oscillator Potential Including a Coulomb-Like Tensor Potential,” International Journal of Modern Physics D, Vol. 20, No. 6, 2009, pp. 931-940. doi:10.1142/S0129183109014084
[34] Y. Zhou and J.-Y. Guo, “The Relativistic Bound States for a New Ring-Shaped Harmonic Oscillator,” Chinese Physical B, Vol. 17, No. 2, 2008, pp. 380-384. doi:10.1088/1674-1056/17/2/004
[35] O. Aydo?du and R. Sever, “Solution of the Dirac Equation for Pseudoharmonic Potential by Using the Niki- forov-Uvarov Method,” Physica Scripta, Vol. 80, No. 1, 2009, Article ID 015001.
[36] S. M. Ikhdair and R. Sever, “Improved Analytical Approximation to Arbitrary l-State Solutions of the Schr?- dinger equation for the Hyperbolical Potentials,” Annals Physics, Vol. 18, 2009, pp. 747-758. doi:10.1002/andp.200910369
[37] S. M. Ikhdair, “On the Bound-State Solutions of the Man- ning-Rosen Potential Including an Improved Approxima- tion to the Orbital Centrifugal Term,” Physica Scripta, Vol. 83, No. 1, 2011, Article ID 015010. doi:10.1088/0031-8949/83/01/015010
[38] S. M. Ikhdair, “Exactly Solvable Effective Mass Dimensional Schr?dinger equation for Pseudoharmonic and Mo- dified Kratzer potentials,” International Journal of Modern Physics C, Vol. 20, No. 3, 2009, pp. 361-372. doi:10.1142/S0129183109013674
[39] S. M. Ikhdair, “Exact Klein-Gordon Equation with Spatially Dependent Masses for Unequal Scalar-Vector Coulomb-Like Potentials,” European Physical Journal A, Vol. 40, No. 2, 2009, pp. 143-149. doi:10.1140/epja/i2009-10758-9
[40] J. Meng, K. Sugawara-Tanabe, S. Yamaji and A. Arima, “Pseudospin Symmetry in Zr and Sn Isotopes from the Proton Drip Line to the Neutron Drip Line,” Physical Re- view C, Vol. 59, No. 1, 1999, p. 154.
[41] W. Greiner, “Relativistic Quantum Mechanics,” Springer, Verlag, Berlin, 1981.
[42] S. M. Ikhdair, “Approximate Solutions of the Dirac Equ- ation for the Rosen-Morse Potential including Spin-Orbit Centrifugal Term,” Journal of Mathematical Physics, Vol. 51, 2010, Article ID 023525. doi:10.1063/1.3293759
[43] S. M. Ikhdair, “An Approximate State Solutions of the Dirac Equation for the Generalized Morse Potential under Spin and Pseudospin Symmetry,” Journal of Mathematical Physics, Vol. 52, No. 5, 2011, Article 052303. doi:10.1063/1.3583553
[44] S. M. Ikhdair and R. Sever, “Approximate Analytical Solutions of the Generalized Woods-Saxon Potential in- cluding Spin-Orbit Coupling Term and Spin Symmetry,” Central European Journal of Physics, Vol. 8, No. 4, 2010, pp. 652-666. doi:10.2478/s11534-009-0118-5
[45] S. M. Ikhdair and R. Sever, “Approximate Bound state Solutions of Dirac Equation with Hulthen Potential inclu- ding Coulomb-Like Tensor Potentials,” Applied Mathema- tical Computation, Vol. 216, No. 3, 2010, pp. 911-923.
[46] S. M. Ikhdair and R. Sever, “Solutions of the Spatially- Dependent Mass Dirac Equation with the Spin and Pseu- dospin Symmetry for the Coulomb-Like Potential,” Ap- plied Mathematical Computation, Vol. 216, No. 2, 2010, pp. 545-555.
[47] S. M. Ikhdair and R. Sever, “Two Approximation Sche- mes to the Bound-States of the Dirac-Hulthen Problem,” Journal of Physics A: Mathematical and Theoretical, Vol. 44, No. 35, 2011, Article ID 355301. doi:10.1088/1751-8113/44/35/355301
[48] J. Karwowski, G. Pestka, M. Stanke and F. E. Harris, “Representation of the Dirac Equation and the Variational- Principle,” International Journal of Quantum Chemistry, Vol. 106, 2006, pp. 3129-3139. doi:10.1002/qua.21053
[49] M. Stanke, J. Karwowski and H. Tatewaki, “Kinetically Balanced Dirac Equation: Properties and Application,” Mo- lecular Physics, Vol. 104, No. 13, 2004, pp. 2085-2092. doi:10.1080/00268970600662309
[50] S. K. Bose, A. Schulze-Halberg and M. Singh, “New Exact Solutions of the Dirac Equation,” Physical Letters A, Vol. 287, No. 5, 2001, pp. 321-324. doi:10.1016/S0375-9601(01)00499-6
[51] M. Moshinsky, “The Harmonic Oscillator in Modern Phy- sics: From Atoms to Quarks,” Gordon and Breach, New York, 1969, p. 29.
[52] M. Moshinsky and A. del Sol Mesa, “The Dirac Oscillator of Arbitrary Spin,” Journal of Physical A: Mathema- tical and General, Vol. 29, No. 1-3, 1996, pp. 4217-4236.
[53] R. M. Mir-Kasimov, “SUq(1,1) and the Relativistic Oscillator,” Journal of Physical A: Mathematical and Gene- ral, Vol. 24, No. 18, 1991, pp. 4283-4302.
[54] W. Lucha, H. Rupprecht and F. F. Sch?berl, “Significance of Relativistic Wave Equations for Bound States,” Physical Review D, Vol. 46, No. 5, 1992, pp. 1088-1095. doi:10.1103/PhysRevD.46.1088
[55] A.D. Alhaidari, H. Bahlouli and A. Al-Hasan, “Dirac and Klein-Gordon Equations with Equal Scalar and Vector Potentials,” Physical Letters A, Vol. 349, No. 1-4, 2006, pp. 87-97. doi:10.1016/j.physleta.2005.09.008
[56] L. I. Schiff, “Quantum Mechanics,” 3rd Edition, McGraw- Hill, New York, 1968.
[57] C. Berkdemir and Y.-F. Cheng, “On the Exact Solutions of the Dirac Equation with a Novel Angle-Dependent Po- tential,” Physica Scripta, Vol. 79, No. 3, 2009, Article ID 035003. doi:10.1088/0031-8949/79/03/035003
[58] S. Flügge, “Practical Quantum Mechanics I,” Springer, Berlin, 1971.

comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.