Impedance Spectroscopy of Concentrated Zirconia Nanopowder Dispersed Systems Experimental Technique


We propose an experimental spectroscopy method for investigating the electrical characteristics of concentrated nanopowder dispersed systems based on compacted ZrO2. The technique is based on measurement of electrochemical impedance of the compacts. A possibility is shown for using the technique to study the processes of structure formation in nanopowder dispersed systems. It is shown that the technique is quite sensitive to detect subtle effects due to the chemical composition of the reactants from which the dispersed phase has been synthesized and external electromagnetic fields. In particular, it has been determined that the powders produced by chemical deposition possess conductiv-ity by nanoparticle volume which is several order of magnitude lower than that for powders obtained from the chloride feedstock. It has been revealed that exposure to weak (H = 105 A/m - 106 A/m) pulsed magnetic fields leads to a redistribution of free charge carriers between volume and surface of the nanoparticles.

Share and Cite:

O. Doroshkevych, A. Shylo, O. Saprukina, I. Danilenko, T. Konstantinova and L. Ahkozov, "Impedance Spectroscopy of Concentrated Zirconia Nanopowder Dispersed Systems Experimental Technique," World Journal of Condensed Matter Physics, Vol. 2 No. 1, 2012, pp. 1-9. doi: 10.4236/wjcmp.2012.21001.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] B. A. Boukamp, “Electrochemical Impedance Spectros- copy in Solid State Ionics: Recent Advances,” Solid State Ionics, Vol. 169, No. 1-4, 2004, pp. 65-73. doi:10.1016/j.ssi.2003.07.002
[2] K. Darowicki, P. Lepski “Dynamic Electrochemical Impedance Spectroscopy of the First Order Electrode Reaction”, Journal of Electroanalytical Chemistry, Vol. 547, No. 1, 2003, pp. 1-8.
[3] P. Dhak, D. Dhak, M. Das, K. Pramanik and P. Pramanik, “Impedance Spectroscopy Study of LaMnO3 Modified BaTiO3 Ceramics,” Materials Science and Engineering: B, Vol. 164, No. 3, 2009, pp. 165-171. doi:10.1016/j.mseb.2009.09.011
[4] M. E. Orazem and B. Tribollet, “An Integrated Approach to Electrochemical Impedance Spectroscopy,” Electrochimica Acta, Vol. 53, No. 25, 2008, pp. 7360-7366.
[5] D. Vladikova, Z. Stoynov and M. Viviani, “Application of the Differential Impedance Analysis for Investigation of Electroceramics,” Journal of the European Ceramic Society, Vol. 24, No. 6, 2004, pp. 1121-1127. doi:10.1016/S0955-2219(03)00585-5
[6] N.-Y. Hsua, S.-C. Yena, K.-T. Jengb and C.-C. Chienb, “Impedance Studies and Modeling of Direct Methanol Fuel Cell Anode with Interface and Porous Structure Perspectives,” Journal of Power Sources, Vol. 161, No. 1, 2006, pp. 232-239. doi:10.1016/j.jpowsour.2006.03.076
[7] W. W. Yang, T. S. Zhao and C. Xu, “Three-Dimensional Two-Phase Mass Trans-port Model for Direct Methanol Fuel Cells,” Electrochimica Acta, Vol. 53, No. 2, 2007, pp. 853-862. doi:10.1016/j.electacta.2007.07.070
[8] W. W. Yang and T. S. Zhao, “Two-Phase, Mass-Transport Model for Direct Metha-nol Fuel Cells with Effect of Non-Equilibrium Evaporation and Condensation,” Journal of Power Sources, Vol. 174, No. 1, 2007, pp. 136-147. doi:10.1016/j.jpowsour.2007.08.075
[9] D. A. Dean, T. Ra-manathan, D. Machado and R. Sunda- rarajan, “Electrical Impedance Spectroscopy Study of Biological Tissues,” Journal of Electrostatics, Vol. 66, No. 3-4, 2008, pp. 165-177.
[10] C. Ribaut, K. Reybier, B. Torbiero, J. Launay, A. Valentin, O. Reynes, P.-L. Fabre and F. Nepveu, “Strategy of Red Blood Cells Immobilisation onto a Gold Electrode: Characterization by Electrochemical Impedance Spec- troscopy and Quartz Crystal Microbalance,” Ingenierie et Recherche Biomedi-cale/BioMedical Engineering and Research, Vol. 29, No. 2-3, 2008, pp. 141-148.
[11] U. G. Kyle, I. Bosaeus, A. D. De Lorenzo, P. Deurenberg, M. Elia, J. M. Gómez, B. L. Heitmann, L. Kent-Smith, J.-C. Melchior, M. Pirlich, H. Scharfetter, A. M. W. J Schols, C. Pichard and Composition of the ESPEN Working Group Bioelectrical, “Impedance Analysis—Part I: Review of Principles and Methods,” Clinical Nutrition, Vol. 23, No. 5, 2004, pp. 1226-1243. doi:10.1016/j.clnu.2004.06.004
[12] U. G. Kyle, I. Bosaeus, A. D. De Lorenzo, P. Deurenberg, M. Elia, J. M. Gómez, B. L. Heitmann, L. Kent-Smith, J.-C. Melchior, M. Pirlich, H. Scharfetter, A. M. W. J Schols and C. Pichard, “Bioelectrical Impedance Analysis—Part II: Utilization in Clinical Practice,” Clinical Nu- trition, Vol. 23, No. 6, 2004, pp. 1430-1453. doi:10.1016/j.clnu.2004.09.012
[13] W. K. Chang, W. C. Wimley, P. C. Searson, K. Hristova and M. Merzlyakov, “Characterization of Antimicrobial Peptide Activity by Electrochemical Impedance Spectro- scopy,” Biochimica et Bio-physica Acta (BBA)—Biomembranes, Vol. 1778, No. 10, 2008, pp. 2430-2436. doi:10.1016/j.bbamem.2008.06.016
[14] E. Barsoukov and J. R. Macdonald, “Impedance Spectro- scopy; Theory, Experiment and Application,” Willey, New York, 2005.
[15] V. V. Tokiy, B. I. Perekhrestov, E. V. Kuzmin, I. A. Danilenko, T. E. Kon-stantinova and N. V. Tokiy, “Impedance Spectroscopy Based Ceramics Nanopowders ZrO2+3 mol. Y2O3 Compacted by Hydrostatic Pressure,” Physics and Technology of High Pressure, Vol. 3, No. 16, 2006, pp. 69-74.
[16] I. N. Serov, V. I. Margo-lin, V. A. Zhabrev, N. A. Potsar, I. A. Soltovskaya, V. A. Tupik and V. S. Phantikov, “Reso- nance Phenomena in Nano-Sized Structures,” 2004.
[17] T. E. Konstantinova, I. A. Danilenko, V. V. Tokiy and V. A. Glazunova, “Getting Nanopowder of Zirconia from In- novation to Innovation,” Science and Innovation, Vol. 1, No. 3, 2005, pp. 76-87.
[18] Y. Z. Agamalov, D. F. Bobylev and V. Y. Kneller, “Virtual Meters, Analyzers, Impedance Parameters,” Sensors and Systems, No. 5, 2004, pp. 14-18.
[19] Y. Agamalov, D. Bobyljev and V. Kneller, “PC-Based Instrument for Impedance Measurement,” 6th IMEKO TC-4 International Symposium on Intelligent Instrumentation for Remote and On-Site Measurements Brussels: BEMECO, IBRA-BIRA, Brussels, 1993, pp. 405-412.
[20] N. A. Drokin, A. V. Fedotova, G. A. Glushchenko and G. N. Churilov, “Impedance Spectroscopy of High-Molecular Poly-ethylene with Carbon Nanotubes,” Solid State Physics, Vol. 52, No. 3, 2010.
[21] A. S. Bondarenko and G. A. Ragoisha, EIS Spectrum Analyser, 2008.
[22] A. Lasia, “Electrochemical Impedance Spectroscopy and Its Applica-tions,” Modern Aspects of Electrochemistry, Vol. 32, 1999, pp. 143-248.
[23] Z. B. Stoynov, B. M. Counts, B. Savova-Stoynova and V. V. Elkin, “Electrochemical Impedance,” Nauka, Moscow, 1991.
[24] S. V. Gnedenkov, S. L. Sinebrukhov and V. I. Sergienko, “Electrochemical Impedance Modeling of the Phase Boun- dary Metal Oxide Heterostructure/Electrolyte,” Electro- chemistry, Vol. 42, No. 3, 2006, pp. 235-250.
[25] J. R. Macdonald, “Analysis of Dispersed, Con-ducting- System Frequency-Response Data,” Journal of Non-Crystalline Solids, Vol. 197, No. 2-3, 1996, pp. 83-110.
[26] N. G. Bukun, E. A. Ukshe and A. E. Ukshe, “Frequency Analysis and Determination of the Impedance Elements,” Electrochemistry, Vol. 29. No. 1, 1993, p. 110.
[27] I. F. Efremov, “Periodic Colloidal Structures,” Chemistry, Leningrad, 1971.
[28] N. D. Uriev, “The Structured Disperse Systems,” Soro- sovsk’s Educational Journal, No. 6, 1998, pp. 42-47.
[29] A. S. Doroshkevich, I. A. Danilenko, I. A. Yaschishin, T. E. Konstantinova, G. K. Volkova and V. A. Glazunova, “The Role of Surface Oxygen in the Processes of Structure Formation of Disperse Systems Nanopowder Base Zirconium Dioxide,” Nanosystems, Nanomaterials, Nano- technologies, Vol. 7, No. 3, 2009, pp. 893-899.
[30] M. E. Compan, V. P. Kuznetsov and V. G. Malyshkin, “Nonlinear Impedance of Solid-State Capacitors, Energonakopitelnyh Ionistorov,” Technical Physics, Vol. 80, No. 5, 2010.
[31] O. L. Kheifets, N. V. Melnikova, A. J. Mollaev, L. A. Saypulaeva, S. N. Callan, R. M. Ferzaliev, A. G. Alibe- kov and A. N. Ba-bushkin, “Effect of High Pressure on the Electrical Properties Ferroelectrics Agpbsbse3, Cusnasse3, Cusnsbse3, Agsnsbse3 and Cusnsbs3,” Physics and Technology of High Pressure, Vol. 19, No. 4, 2009.
[32] I. N. Serov, , V. I. Margolin, V. A. Zhabrev, N. A. Potsar, I. A. Soltovskaya V. A. Tupik and V. S. Phan-tikov, “Resonance Phenomena in Nanoscale Structures,” Engineering Physics, No. 1, 2004, p. 18.
[33] Y. I. Golovin, R. B. Morgunov, V. E. Ivanov and A. A. Demetrius, “The Effects of Weakening of Ionic Crystals, Due to Changes in the Spin States of Structural Defects in Magnetic Resonance,” JETP, Vol. 117, No. 6, 2000, pp. 1080-1093.
[34] Y. I. Golovin and R. B. Morgunov, “The Influence of a Weak Magnetic Field on the State of Structural Defects and the Plasticity of Ionic Crystals,” JETP, Vol. 115, No. 2. 1999, pp. 605-623.
[35] Y. I. Golovin, R. B. Morgunov, A. A. Baskakov and S. Z. Shmurak, “Effect of Magnetic Field on the Electroluminescence Intensity of Single Crystals of ZnS,” Physics of the Solid State, Vol. 41, No. 11, 1999, pp. 1944-1947.
[36] M. N. Levin and B. A. Zon, “The Impact of Pulsed Magnetic Fields on the Crystals Cs-Si,” JETP, Vol. 111, No. 4. 1997, pp. 1373-1397.
[37] M. N. Levin, V. N. Semenov and Y. V. Meteleva, “The Impact of Pulsed Magnetic Fields in Thin Layers Cd0.5- Zn0.5S,” Technical Physics Letters, Vol. 27, No. 10, 2002, pp. 37-42.
[38] S. V. Gne-denko and S. L. Sinebrukhov, “Impedance Spectroscopy in the Study of Charge Transfer Processes,” Bulleten of the Far Eastern Branch of the Russian Academy of Sciences, No. 5, 2006, pp. 6-16.

Copyright © 2022 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.