Hydromorphological Mapping and Analysis for Characterizing Darfur Paleolake, NW Sudan Using Remote Sensing and GIS

Abstract

The north-western part of Sudan, which is the driest region on earth has revealed newly surface and near surface paleodrainage network underneath sand sheets indicating the possibilities for economic groundwater reservoirs. Advanced Space-born Thermal Radiometer (ASTER), the Shuttle Radar Topography Mission (SRTM ~90 m) DEMs and Quickbird images corroborate the presence of surface and near surface paleodrainage network. Bivariate quadratic surfaces with moving window size of 3 × 3 were fitted to the SRTM DEM. The second derivative surface curvature was calculated to reveal landform classes that may receive most of fossil water. The results showed that the new unnamed depression which recharges by a longitudinal paleodrainage network may receive vast amount of groundwater during humid phases. The results demonstrate that the D8 and curvature algorithms are very efficient tools for revealing and characterizing hydrological elements in arid and semi-arid regions and they provide information for hydrological exploration in remote deserts over large scale prior to geophysical survey.

Share and Cite:

S. Elmahdy, "Hydromorphological Mapping and Analysis for Characterizing Darfur Paleolake, NW Sudan Using Remote Sensing and GIS," International Journal of Geosciences, Vol. 3 No. 1, 2012, pp. 25-36. doi: 10.4236/ijg.2012.31004.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] A. M. Omer, “Water Sources and Environment in Sudan,” Network for Water and Sanitation, Vol. 4, No. 3, 1997, pp. 5-7.
[2] C. V. Haynes, “Oyo: A Lost Oasis of the Southern Libyan Desert,” The Geographical Journal, Vol. 155, No. 2, 1989, pp. 189-195. doi:10.2307/635060
[3] R. K. Farnsworth, E. C. Brrett and M. S. Dhanju, “Application of Remote Sensing to Hydrology Including Ground- water,” United Nations Educational Scientific and Cultural Organization, Paris, 1984.
[4] A. Ho, “Gravity and Seismic Refraction Measurements for Deep Ground Water Search in Southern Darfur Region, Sudan,” NWWA Conference on Surface and Borehole Geophysical Methods in Ground Water Investigations, Fort Worth, 12-14 February 1985, pp. 106-120.
[5] A. M. Omer, “Focus on Groundwater in Sudan,” Environmental Geology, Vol. 41, No. 8, 2002, pp. 972-976. doi:10.1007/s00254-001-0476-9
[6] F. Wendorf, A. Close, R. Schild, R. Said, C. V. Haynes, A. Gautier and N. Hadidi, “Late Pleistocene and Recent Climatic Changes in the Egyptian Sahara,” Geographical Journal, Vol. 143, No. 2, 1977, pp. 211-234. doi:10.2307/1795874
[7] J. McCauley, G. Schaber, C. Breed, C. V. Haynes, J. Grolier, B. Issawi, C. Elachi and R. Blom, “Subsurface Valleys and Geoarchaeology of Egypt and Sudan Revealed by RADAR,” Science, Vol. 218, 1982, pp. 1004-1020. doi:10.1126/science.218.4576.1004
[8] H. Pachur and F. Rottinger, “Evidence for a Large Extended Paleolake in the Eastern Sahara as Revealed by Space Borne Radar Lab Images,” Remote Sensing of Environment, Vol. 61, No. 3, 1997, pp. 437-440. doi:10.1016/S0034-4257(96)00210-6
[9] I. Florinsky and G. A. Kuryakova, “Influence of Topography on Some Vegetation Cover Properties,” Catena, Vol. 27, No. 2, 1996, pp. 123-141. doi:10.1016/0341-8162(96)00005-7
[10] J. Ritchie and C. Haynes, “Holocene Vegetation Zonation in the Eastern Sahara,” Nature, Vol. 330, No. 6194, 1987, pp. 645-647. doi:10.1038/330645a0
[11] H. Pachur and P. Hoelzmann, “Paleoclimatic Implications of late Quaternary Lacustrine Sediments in Western Nubia, Sudan,” Quaternary Research, Vol. 36, No. 3, 1991, pp. 257-276. doi:10.1016/0033-5894(91)90002-M
[12] H. J. Pachur and F. Rottinger, “Evidence for a Large Extended Paleolake in the Eastern Sahara as Revealed by Spaceborne Radar Lab Images,” Remote Sensing of Environment, Vol. 61, No. 3, 1997, pp. 437-440. doi:10.1016/S0034-4257(96)00210-6
[13] P. Hoelzmann, B. Keding, H. Berke, S. Kropelin and H. Kruse, “Environmental Change and Archaeology: Lake Evolution and Human Occupation in the Eastern Sahara during the Holocene,” Palaeogeography, Palaeoclimatology, Palaeoecology, Vol. 169, 2001, pp. 193-217. doi:10.1016/S0031-0182(01)00211-5
[14] K. J. Bhang, F. W. Schwartz and A. Braun, “Verification of the Vertical Error in C Band Srtm Dem Using Icesat and Landsat-7, Otter Tail County Mn,” IEEE Transaction of Geoscience & Remote Sensing, Vol. 45, No. 1, 2007, pp. 36-44. doi:10.1109/TGRS.2006.885401
[15] K. J. Bhang and F. W. Schwartz, “Limitations in the Hydrologic Application of C Band Srtm Dems in Low Relief Settings,” IEEE Geoscience and Remote Rensing Letters, Vol. 5, No. 3, 2008, pp. 497-501. doi:10.1109/LGRS.2008.920712
[16] L. E. Roth and C. Elachi, “Coherent Electromagnetic Losses by Scattering from Volume in Homogeneities,” IEEE Transactions of the Antennas and Propagation, Vol. 23, 1975, pp. 674-675. doi:10.1109/TAP.1975.1141170
[17] G. Schaber, J. Mccauley and C. Breed, “The Use of Multifrequency and Polarimetric SIR-C/X-SAR Data in Geologic Studies of Bir Safsaf, Egypt,” Remote Sensing of Environment, Vol. 59, No. 2, 1997, pp. 337-363. doi:10.1016/S0034-4257(96)00143-5
[18] E. Ghoneim and F. El-Baz, “The Application of Radar Topographic Data to Mapping of a Mega-Paleodrainage in the Eastern Sahara,” Journal of Arid Environments, Vol. 69, No. 4, 2007, pp. 658-675. doi:10.1016/j.jaridenv.2006.11.018
[19] I. D. Moore, P. E. Gessler, G. A. Nielsen and\ G. A. Peterson, “Soil Attribute Prediction Using Terrain Analysis,” Soil Science Society of America Journal, Vol. 57, No. 2, 1993, pp. 443-452. doi:10.2136/sssaj1993.03615995005700020026x
[20] I. Florinsky and G. A. Kuryakova, “Influence of Topography on Some Vegetation Cover Properties,” Catena, Vol. 27, No. 2, 1996, pp. 123-141. doi:10.1016/0341-8162(96)00005-7
[21] P. A. Goovaerts, “Geostatistical Approaches for Incorporating Elevation into the Spatial Interpolation of Rainfall,” Journal of Hydrology, Vol. 228, No. 1-2, 2000, pp. 113-129. doi:10.1016/S0022-1694(00)00144-X
[22] M. M. Valeriano and O. A. Carvalho Jr., “GeoprocesSamento de Modelos Digitais de Elevac-a?o Para Mapeamento da Curvature Horizontal em Microbacias,” Revista Brasileira de Geomorfologia, Vol. 4, No. 1, 2003, pp. 17-29.
[23] D. K. Molna′r and P. Y. Julien, “Estimation of Upland Erosion Using GIS,” Computers & Geosciences, Vol. 24, No. 2, 1998, pp. 183-192. doi:10.1016/S0098-3004(97)00100-3
[24] P. J. J. Desmet and G. Govers, “A GIS Procedure for Automatically Calculating the USLE LS Factor on Topographically Complex Landscape Units,” Journal of Soil and Water Conservation, Vol. 51, No. 5, 1996, pp. 427- 433.
[25] L. E. Band, “Topographic Partition of Watersheds with Digital Elevation Models,” Water Resources Research, Vol. 22, No. 1, 1986, pp. 15-24. doi:10.1029/WR022i001p00015
[26] G. Miliaresis, “Geomorphometric Mapping of Zagros Ranges at Regional Scale,” Computers & Geosciences, Vol. 27, No. 7, 2001, pp. 715-728. doi:10.1016/S0098-3004(00)00168-0
[27] W. Iskander, “An Appraisal of Ground Water Resources of Zalingei Area—Darfur Province—Sudan,” M.Sc. Thesis, University of Arizona, Tucson, 1969.
[28] B. Rabus, M. Eineder, A. Roth and R. Bamler, “The Shuttle Radar Topography Mission—A New Class of Di- gital Elevation Models Acquired by Space Borne Radar,” ISPRS Journal of Photogrammetry and Remote Sensing, Vol. 57, 2003, pp. 241-262. doi:10.1016/S0924-2716(02)00124-7
[29] ftp://e0srp01u.ecs.nasa.gov/srtm
[30] A. Jarvis, H. Reuter, A. Nelson and E. Guevara, “Hole- Filled Seamlen SRTM Data v3,” 2006. ftp://e0srp01u.ecs.nasa.gov/srtm
[31] http://srtm.csi.cgiar.org/Index.asp
[32] www.Googleearth.com
[33] http://www.gdem.aster.ersdac.or.jp/search.jsp
[34] Hydrological Map of Sudan, “Scale 1:2000000, Ministry of Energy and Mines,” Khartoum, 1989.
[35] P. L. Guth, “Geomorphometry in MICRODEM,” In: T. Hengl and H. I. Reuter, Eds., Geomorphometry: Concepts, Software, Applications. Developments in Soil Science Series, Elsevier, Amsterdam, 2008, pp. 351-366.
[36] A. H. Ehsani and F. Quiel, “Application of Self Organizing Map and SRTM Data to Characterize Yardangs in the Lut Desert, Iran,” Remote Sensing of Environment, Vol. 112, 2008, pp. 3284-3294. doi:10.1016/j.rse.2008.04.007
[37] D. G. Tarboton, “A New Method for the Determination of Flow Directions and Contributing Areas in Grid Digital Elevation Models,” Water Resources Research, Vol. 33, 1997, pp. 309-319. doi:10.1029/96WR03137
[38] M. Klimanek, “Geoinformation Support of Derived Mapping Based on Digital Terrain Model,” Ph.D. Thesis, Mendel, University of Agriculture and Forestry Brno, Brno, 2010.
[39] S. Jenson and J. Domingue, “Extracting Topographic Struc- ture from Digital Elevation Model Data for Geographic Information System Analysis,” Photogrammetric Enginee- ring and Remote Sensing, Vol. 54, No. 11, 1988, pp. 1593- 1600.
[40] J. F. O’callaghan and D. M. Mark, “The Extraction of Drainage Networks from Digital Elevation Data,” Computer Vision, Graphics, and Image Processing, Vol. 28, No. 3, 1984, pp. 323-344. doi:10.1016/S0734-189X(84)80011-0
[41] Environmental Research Institute, “Using ArcGIS Geostatistical Analyst Arc GIS software Manual,” Redlands, 2007.
[42] I. S. Evans, “General Geomorphology, Derivatives of Altitude and Descriptive Statistics,” In: R. J. Chorley, Ed., Spatial Analysis in Geomorphology, Methuen & Co. Ltd, London, 1972, pp. 17-90.
[43] J. Wood, “The Geomorphologic Characterization of Di- gital Elevation Models,” Ph.D. Thesis, University of Lei- cester, Leicester, 1996.
[44] P. A. Shary, S. L. Sharaya and A. V. Mitusov, “Fundamental Quantitative Methods F Land Surface Analysis,” Geoderma, Vol. 107, No. 1-2, 2002, pp. 1-32. doi:10.1016/S0016-7061(01)00136-7
[45] A. Shatta, “Remarks on the Regional Geological Structure of the Ground Water Reservoir of E1-Kharga and Dakhla Oases,” Bulletin Society Geography, Vol. 34, 1961, pp. 177-186.
[46] J. Ball, “Problems of the Libyan Desert,” The Geogra- phical Journal, Vol. 70, No. 1, 1927, pp. 21-38.
[47] G. Caton-Thompson, “Kharga Oases in Prehistory with A Physiographic Introduction by E. W. Gardner,” University of London, Athlone Press, London, 1952.
[48] I. Samy, “Remote sening for Hydrological Application in the Vacinity of AlDhied,” M.Sc. Thesis, University Tech- nology, Malaysia (UTM), Kuala Lumpur, 2006.
[49] R. N. Subba, “Groundwater Potential Index in a Crystalline Terrain Using Remote Sensing Data,” Environmental Geology, Vol. 50, No. 7, 2006, pp. 1067-1076. doi:10.1007/s00254-006-0280-7

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.