Share This Article:

A Review of the Aqueous Aerosol Surface Chemistry in the Atmospheric Context

Abstract Full-Text HTML Download Download as PDF (Size:688KB) PP. 58-66
DOI: 10.4236/ojpc.2012.21008    4,844 Downloads   10,060 Views   Citations

ABSTRACT

In this review the surface chemistry and properties of aqueous atmospheric aerosols are explored. Water plays a major role in scavenging pollutants. Reactions occur on thin water films in atmospheric aerosols. The study of the aerosol wa- ter surface is important to properly account for chemical transformations in the troposphere. The thermodynamics of adsorption of organic molecules and oxidant species on the aqueous surface and, the techniques employed to quantify the adsorption isotherms are summarized. Experimental techniques for elucidating the reactions on the water surface are described. Field and laboratory data for oxidation reactions of compounds at the air-water interface are summarized. The Langmuir-Hinshelwood reaction mechanism is useful in quantifying the reaction rate on the aqueous aerosol sur- face. A hypothesis for the large heterogeneous reaction rate on the water surface over the homogeneous bulk aqueous phase reaction is presented.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

K. Valsaraj, "A Review of the Aqueous Aerosol Surface Chemistry in the Atmospheric Context," Open Journal of Physical Chemistry, Vol. 2 No. 1, 2012, pp. 58-66. doi: 10.4236/ojpc.2012.21008.

References

[1] J. H. Seinfeld, S. N. Pandis, “Atmospheric Chemistry and Physics,” John Wiley and Sons, Inc., New York, 2006.
[2] K. T. Valsaraj, “Elements of Environmental Engineering,” 3rd Edition, Taylor and Francis Publishers, New York, 2009.
[3] S. Solomon, S. Qin, D. Chen, Z. Marquis, K. B. Averyt, M. Tignor and H. L. Miller (Eds.), “Climate Change 2007: The Physical Basis, Contributions of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change,” IPCC, Cambridge University Press, Cambridge, 2007.
[4] S. R.-V. Castrillon, N. Giovambattista, I. A. Aksay and P. Debenedetti, “Structure and Energetics of Thin Water Films,” Journal of Physical Chemistry C, Vol. 115, 2011, 115, pp. 4624-4635. doi:10.1021/jp1083967
[5] E. M. Knipping, M. J. Lakin, K. L. Foster, P. Jungwirth, D. J. Tobias, R. B. Gerber, D. Dabdub and B. J. Finlayson-Pitts, “Experiments and Simulations of Ion-Enhanced Interfacial Chemistry on Aqueous NaCl Aerosols,” Science, Vol. 288, No. 5464, 2000, pp. 301-306. doi:10.1126/science.288.5464.301
[6] M. Dall’Osto, R. M. Harrison, H. Coe and P. Williams, “Real-Time Secondary Aerosol Formation during a Fog Event in London,” Atmospheric Chemistry and Physics, Vol. 9, No. 7, 2009, pp. 2459-2469. doi:10.5194/acp-9-2459-2009
[7] S. Raja, R. Ravikrishna, X.-Y. Yu, T. Lee, J. Chen, R. R. Kommalapati, K. Murugesan, X. Shen, K. T. Valsaraj and J. L. Collett, “Fog Chemistry in the Texas-Louisiana Gulf Coast Corridor,” Atmospheric Environment, Vol. 42, No. 9, 2008, pp. 2048-2061. doi:10.1016/j.atmosenv.2007.12.004
[8] I. J. George and J. P. D. Abbatt, “Heterogeneous Oxidation of Atmospheric Aerosol Particles by Gas-Phase Radicals,” Nature Chemistry, Vol. 2, No. 9, 2010, pp. 713-722. doi:10.1038/nchem.806
[9] C. J. van Oss, “Interfacial Forces in Aqueous Media,” Taylor and Francis, New York, 2006.
[10] E. E. Meyer, K. J. Rosenberg and J. N. Israelachvili, Proceedings of the National Academy of Sciences, Vol. 103, 2006, pp. 15739-15746.
[11] J. N. Israelachvili, “Intermolecular and Surface Forces,” 3rd edition, Academic Press, New York, 2010.
[12] J. S. Smith and K. T. Valsaraj, “Solvent Sublation for Industrial Wastewater Treatment,” Chemical Engineering Progress, Vol. 94, No. 5, 1998, pp. 69-76.
[13] H. F. Rafson (Ed.), “Odor and VOC Control Handbook,” McGraw Hill Pub Co., New York, 1998.
[14] K. T. Valsaraj, G. J. Thoma, D. D. Reible and L. J. Thibodeaux, “On the Enrichment of Hydrophobic Organic Compounds in Fog Droplets,” Atmospheric Environment, Vol. 27A, No. 2, 1993, pp. 203-210. doi:10.1016/0960-1686(93)90351-X
[15] J. D. Blando and B. J. Turpin, “Secondary Organic Aerosol Formation in Cloud and Fog Droplets: A Literature Evaluation of Plausibility,” Atmospheric Environment, Vol. 34, No. 10, 2000, pp. 1623-1632. doi:10.1016/S1352-2310(99)00392-1
[16] D. J. Donaldson and K. T. Valsaraj, “Adsorption and Reaction of Trace Gas-Phase Organic Compounds on Atmospheric Water Film Surfaces: A Critical Review,” Environmental Science & Technology, Vol. 44, No. 3, 2010, pp. 865-873. doi:10.1021/es902720s
[17] K. T. Valsaraj, “Trace Gas Adsorption Thermodynamics at the Air-Water Interface: Implications in Atmospheric Chemistry,” Pure and Applied Chemistry, Vol. 81, No. 10, 2009, pp. 1889-1901. doi:10.1351/PAC-CON-08-07-06
[18] D. J. Donaldson and D. Anderson, “Adsorption of Atmospheric Gases at the Air-Water Interface. 2. C1-C4 Alcohols, Acids, and Acetone,” Journal of Physical Chemistry A, Vol. 103, No. 1, 1999, pp. 871-876. doi:10.1021/jp983963h
[19] R. Braunt and M. J. Conklin, “Dynamic Determination of Vapor/Water Interface Adsorption for Volatile Hydrophobic Organic Compounds (VHOCs) Using Axisymmetric Drop Shape Analysis:? Procedure and Analysis of Benzene Adsorption,” Journal of Physical Chemistry B, Vol. 104, No. 47, 2004, pp. 11146-11152. doi:10.1021/jp001140y
[20] A. Hartkopf and B. L. Karger, “Study of the Interfacial Properties of Water by Gas Chromatography,” Accounts of Chemical Research, Vol. 6, 1973, pp. 209-221. doi:10.1021/ar50066a006
[21] S. Raja, F. S. Yaccone, R. Ravikrishna and K. T. Valsaraj, “Thermodynamic Parameters for the Adsorption of Aromatic Hydrocarbon Vapors at the Gas-Water Interface,” Journal of Chemical & Engineering Data, Vol. 47, No. 5, 2002, pp. 1213-1219. doi:10.1021/je025520j
[22] J. Chen, F. S. Ehrenhauser, K. T. Valsaraj and M. J. Wornat, “Uptake and UV-Photooxidation of Gas-Phase PAHs on the Surface of Atmospheric Water Films. 1. Naphthalene,” Journal of Physical Chemistry A, Vol. 110, No. 29, 2006, pp. 161-916. doi:10.1021/jp062560b8
[23] K. T. Valsaraj, “On the Physico-Chemical Aspects of Partitioning of Non-Polar Hydrophobic Organics at the Air-Water Interface,” Chemosphere, Vol. 17, No. 5, 1988, pp. 875-887. doi:10.1016/0045-6535(88)90060-4
[24] K. T. Valsaraj, “Binding Constants for Non-Polar Hydrophobic Organics at the Air-Water Interface: Comparison of Experimental and Predicted Values,” Chemosphere, Vol. 17, No. 10, 1988, pp. 2049-2061. doi:10.1016/0045-6535(88)90015-X
[25] K.-U. Goss and R. P. Schwarzenbach, “Linear Free Energy Relationships Used to Evaluate Equilibrium Partitioning of Organic Compounds,” Environmental Science & Technology, Vol. 35, No. 1, 2001, pp. 1-9. doi:10.1021/es000996d
[26] K.-U. Goss, “Conceptual Model for the Adsorption of Organic Compounds from the Gas Phase to Liquid and Solid Surfaces,” Environmental Science & Technology, Vol. 31, No. 12, 1997, pp. 3600-3605. doi:10.1021/es970361n
[27] C. P. Kelly, C. J. Cramer and D. G. Truhlar, “Predicting Adsorption Coefficients at Air-Water Interfaces Using Universal Solvation and Surface Area Models,” Journal of Physical Chemistry B, Vol. 108, No. 34, 2004, pp. 12882-12897. doi:10.1021/jp037210t
[28] K.-U. Goss, “Predicting Adsorption of Organic Chemicals at the Air-Water Interface,” Journal of Physical Chemistry A, Vol. 113, No. 44, 2009, 12256-12259. doi:10.1021/jp907347p
[29] R. Vacha, P. Jungwirth, J. Chen and K. T. Valsaraj, “Adsorption of Polycyclic Aromatic Hydrocarbons at the Air–Water Interface: Molecular Dynamics Simulations and Experimental Atmospheric Observations,” Physical Chemistry Chemical Physics, Vol. 8, No. 38, 2006, pp. 4461-4467. doi:10.1039/b610253k
[30] R. Vacha, K. Cwiklik, J. Rezac, P. Hobza, P. Jungwirth, K. Valsaraj, S. Bahr and V. Kempter, “Adsorption of Aromatic Hydrocarbons and Ozone at Environmental Aqueous Surfaces,” Journal of Physical Chemistry A, Vol. 112, No. 22, 2008, pp. 4942-4950. doi:10.1021/jp711813p
[31] T. Somasundaram, R. M. Lyndon-Bell and C. H. Patterson, “The Passage of Gases through the Liquid Water/Vapour Interface: A Simulation Study,” Physical Chemistry Chemical Physics, Vol. 1, No. 1, 1999, pp. 143-148. doi:10.1039/a805067h
[32] C. D. Wick, B. Chen and K. T. Valsaraj, “Computational Investigation of the Influence of Surfactants on the Air- Water Interfacial Behavior of Polycylic Aromatic Hydrocarbons,” Journal of Physical Chemistry C, Vol. 114, no. 34, 2010, pp. 14520-14527. doi:10.1021/jp1039578
[33] J. Chen, F. Ehrenhauser, T. Arachi, F. Hung, K. Valsaraj and M. Wornat, “Adsorption of Gas-Phase Phenanthrene on Atmospheric Water and Ice Films,” Polycyclicarom Atichydrocarbons, Vol. 31, 2011, pp. 1-26. doi:10.1080/10406638.2011.585370
[34] R. Vacha, P. Slavaicek, M. Mucha, B. Finlayson-Pitts and P. Jungwirth, “Adsorption of Atmospherically Relevant Gases at the Air/Water Interface:? Free Energy Profiles of Aqueous Solvation of N2, O2, O3, OH, H2O, HO2, and H2O2,” Journal of Physical Chemistry A, Vol. 108, 2004, pp. 11573-11579. doi:10.1021/jp046268k
[35] R. Vacha, P. Slavicek, M. Mucha, B. J. Finlayson-Pitts and P. Jungwirth, “Adsorption of Atmospherically Relevant Gases at the Air/Water Interface: Free Energy Profiles of Aqueous Solvation of N2, O2, O3, OH, H2O, HO2, and H2O2,” Journal of Physical Chemistry A, Vol. 108, No. 52, 2004, pp. 11573-11579. doi:10.1021/jp046268k
[36] J. Chen, F. Ehrenhauser, K. T. Valsaraj and M. J. Wornat, “Adsorption and UV Photooxidation of Gas-Phase Phenanthrene on Atmospheric Films,” ACS Symposium Series, Vol. 1005, 2009, pp. 127-146. doi:10.1021/bk-2009-1005.ch009
[37] I.-F. W. Kuo and C. J. Mundy, “An ab Initio Molecular Dynamics Study of the Aqueous Liquid-Vapor Interface,” Science, Vol. 303, No. 5658, 2004, pp. 658-662. doi:10.1126/science.1092787
[38] X. D. Zhu, H. Suhr and Y. R. Shen, “Surface Vibrational Spectroscopy by Infrared-Visible Sum Frequency Generation,” Physical Review B, Vol. 35, No. 6, 1987, pp. 3047-3050. doi:10.1103/PhysRevB.35.3047
[39] B. T. Mmereki, D. J. Donaldson, J. B. Gilman, T. L. Eliason and V. Vaida, “Kinetics and Products of the Reaction of Gas-Phase Ozone with Anthracene Adsorbed at the Air-Aqueous Interface,” Atmospheric Environment, Vol. 38, 2004, pp. 6091-6103. doi:10.1016/j.atmosenv.2004.08.014
[40] E. S. Enami, M. R. Hoffmann and A. J. Colussi, “Ozonolysis of Uric Acid at the Air/Water Interface,” Journal of Physical Chemistry B, Vol. 112, No. 14, 2008, pp. 4153-4157. doi:10.1021/jp712010k
[41] R. Vacha, L. Cwiklik, J. Rezac, P. Hobza, P. Jungwirth, K. Valsaraj, S. Bahr and V. Kempter, “Adsorption of Aromatic Hydrocarbons and Ozone at Environmental Aqueous Surfaces,” Journal of Physical Chemistry A, Vol. 112, No. 22, 2008, pp. 4942-4947. doi:10.1021/jp711813p
[42] S. N. Wren and D. J. Donaldson, “Glancing-Angle Raman Spectroscopic Probe for Reaction Kinetics at Water Surfaces,” Physical Chemistry Chemical Physics, Vol. 12, No. 11, 2010, pp. 2648-2654. doi:10.1039/b922254e
[43] S. Raja and K. T. Valsaraj, “Heterogeneous Oxidation by Ozone of Naphthalene Adsorbed at the Air-Water Interface of Micron-Size Water Droplets,” Journal of the Air & Waste Management Association, Vol. 55, No. 9, 2005, pp. 1345-1355.
[44] I. V. Stiopkin, H. D. Jayathilake, A. N. Bordenyuk and A. V. Benderskii, “Heterodyne-Detected Vibrational Sum Frequency Generation Spectroscopy,” Journal of the American Chemical Society, Vol. 130, No. 7, 2008, pp. 2271-2275. doi:10.1021/ja076708w
[45] C Waring, P. A. J. Bagot, M. L. Costen and K. G. McKendrick, “Reactive Scattering as a Chemically Specific Analytical Probe of Liquid Surfaces,” The Journal of Physical Chemistry Letters, Vol. 2, No. 1, 2011, pp. 12-18. doi:10.1021/jz1013032
[46] Y. R. Shen and V. Ostroverkhov, “Sum-Frequency Vibrational Spectroscopy on Water Interfaces:? Polar Orientation of Water Molecules at Interfaces,” Chemical Reviews, Vol. 106, No. 4, 2006, pp. 140-154. doi:10.1021/cr040377d
[47] K. Harper, B. Minofar, M. R. Sierra-Hernandez, N. N. Casillas-Ituarte, M. Roeselova and H. C. Allen, “Surface Residence and Uptake of Methyl Chloride and Methyl Alcohol at the Air/Water Interface Studied by Vibrational Sum Frequency Spectroscopy and Molecular Dynamics,” Journal of Physical Chemistry A, Vol. 113, No. 10, 2009, pp. 2015-2024. doi:10.1021/jp808630v
[48] K. B. Eisenthal, “Equilibrium and Dynamic Processes at Interfaces by Second Harmonic and Sum Frequency Generation,” Annual Review of Physical Chemistry, Vol. 43, 1992, pp. 627-661. doi:10.1146/annurev.pc.43.100192.003211
[49] N.-O. A. Kwamena, M. G. Staikova, D. J. Donaldson, I. J. Goerge and J. P. D. Abbatt, “Role of the Aerosol Substrate in the Heterogeneous Ozonation Reactions of Surface-Bound PAHs,” Journal of Physical Chemistry A, Vol. 111, No. 43, 2007, pp. 11050-11058. doi:10.1021/jp075300i
[50] M. Shiraiwa, Y. Sosedova, A. Ronviere, H. Yang, Y. Zhang, J. P. D. Abbatt, M. Ammann and U. Poschl, “The Role of Long-Lived Reactive Oxygen Intermediates in the Reaction of Ozone with Aerosol Particles,” Nature Chemistry, Vol. 3, 2011, pp. 291-295. doi:10.1038/NCHEM.988
[51] J. Chen and K. Valsaraj., “Uptake and UV-Photooxidation of Gas-Phase PAHs on the Surface of Atmospheric Water Films. 1. Naphthalene,” Journal of Physical Chemistry A, Vol. 110, 2006, pp. 9161-9166. doi:10.1021/jp062560b
[52] R. S. Strekowski, R. Remorov and Ch. George, “Direct Kinetic Study of the Reaction of Cl2 Radical Anions with Ethanol at the Air-Water Interface,” Journal of Physical Chemistry A, Vol. 107, 2003, pp. 2497-2504. doi:10.1021/jp026174f
[53] S. Narayan, J. Muldoon, M. G. Finn, V. V. Fokin, H. C. Kolb and K. B. Sharpless, “On Water: Unique Reactivity of Organic Compounds in Aqueous Suspension,” Angewandte Chemie International Edition, Vol. 44, No. 21, 2005, pp. 3275-3279. doi:10.1002/anie.200462883
[54] Y. Jung and R. A. Marcus, “On the Theory of Organic Catalysis ‘on Water’,” Journal of the American Chemical Society, Vol. 129, No. 17, 2007, pp. 5492-5502. doi:10.1021/ja068120f
[55] K. T. Valsaraj, “Trace Gas Adsorption Thermodynamics at the Air-Water Interface: Implications in Atmospheric Chemistry,” Pure and Applied Chemistry, Vol. 81, No. 10, 2009, pp. 1889-1901. doi:10.1351/PAC-CON-08-07-06
[56] P. Nissensson, C. J. X. Knox, B. J. Finlayson-Pitts, L. F. Phillips and D. Dabdub, “Enhanced Photolysis in Aerosols: Evidence for Important Surface Effects,” Physical Chemistry Chemical Physics, Vol. 8, No. 40, 2006, pp. 4700-4710. doi:10.1039/b609219e
[57] H. Watanabe, S. Yamaguchi, S. Sen, A. Morita and T. Tahara, “‘Half-hydration’ at the Air/Water Interface Revealed by Heterodyne-Detected Electronic Sum Frequency Generation Spectroscopy, Polarization Second Harmonic Generation, and Molecular Dynamics Simulation,” Journal of Chemical Physics, Vol. 132, No. 14, 2010, p. 144701. doi:10.1063/1.3372620
[58] M. L. Johnson, C. Rodriguez and I. Benjamin, “Rotational Dynamics of Strongly Adsorbed Solute at the Water Surface,” Journal of Physical Chemistry A, Vol. 113, 2009, pp. 2086-2091. doi:10.1021/jp808842k
[59] P. Nissenson, D. Dabdub, R. Das, V. Maurino, C. Minero, D. Vione, “Evidence of the Water-Cage Effect on the Photolysis of and FeOH2+. Implications of This Effect and of H2O2 Surface Accumulation on Photochemistry at the Air-Water Interface of Atmospheric Droplets,” tmospheric Environment, Vol. 44, 2010, pp. 4859-4866. doi:10.1016/j.atmosenv.2010.08.035

  
comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.