Dielectric spectroscopy of diglycidyl ether of bisphenol-A at glass transition temperature


We used broadband dielectric spectroscopy in the frequency range from 10–2 Hz up to 107 Hz and we found dynamics of the primary α- and intermolecular Johari-Goldstein (JG) β-processes are strongly correlated in diglycidyl ether of bisphenol-A over a wide temperature from 193 to 283K and pressure P range from 0.1 to 600 MPa. Analysing the temperature and pressure behavior of the α - and (JG) β-processes, a clear correlation has been found between the structural relaxation time, the Johari-Goldstein relaxation time and the dispersion of the structural relaxation. These results support the idea that the Johari-Goldstein relaxation acts as a precursor of the structural relaxation and therefore of the glass transition phenomenon.

Share and Cite:

Sharifi, S. (2012) Dielectric spectroscopy of diglycidyl ether of bisphenol-A at glass transition temperature. Natural Science, 4, 136-141. doi: 10.4236/ns.2012.42020.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Sharifi, S. (2011) Temperature dependence of the activation volume of secondary relaxation in glass formers. ISRN Materials Science, 460751.
[2] Sharifi, S. and Asl, J.M. (2011) Secondary relaxation inside the glass. ISRN Materials Science, 201, 764874.
[3] Sharifi, S. (2011) Activation volume of secondary relaxation. Materials Sciences and Applications, 2, 624-628. doi:10.4236/msa.2011.26084
[4] Ngai, K.L. (2003) an extended coupling model description of the evolution of dynamics with time in supercooled liquids and ionic conductors. Journal of Physics: Condensed Matter, 15, S1107. doi:10.1088/0953-8984/15/11/332
[5] Grzybowska, K., Grzybowski, A., Ziolo, J., Paluch, M. and Capaccioli, S. (2006) Dielectric secondary relaxations in polypropylene glycols. Journal of Chemical Physics, 125, 044904. doi:10.1063/1.2219112
[6] Sharifi, S., Capaccioli, S., Lucchesi, M., Rolla, P. and Prevosto, D. (2011) Temperature and pressure dependence of secondary process in an epoxy system. Journal of Chemical Physics, 134, 044510. doi:10.1063/1.3518972
[7] Dlubek, G., Kilburn, D. and Alam, M.A. (2005) Temperature and pressure dependence of α-relaxation and free volume in poly(vinyl acetate). Macromolecular Chemistry and Physics, 206, 818-826. doi:10.1002/macp.200400495
[8] Tyagi, M., Aleg, A. and Colmenero, J. (2007) Broadband dielectric study of oligomer of poly(vinyl acetate): A detailed comparison of dynamics with its polymer analog. Physical Review E, 75, 061805. doi:10.1103/PhysRevE.75.061805
[9] Paluch, M., Patkowski, A. and Fisher, E.W. (2000) Temperature and Pressure Scaling of the α Relaxation Process in Fragile Glass Formers: A Dynamic Light Scattering Study. Physical Review Letters, 85, 2140-2143. doi:10.1103/PhysRevLett.85.2140
[10] Comez, L., Fioretto, D., Palmieri, L., Verdini, L., Rolla, P.A., Gapinski, J., Pakula, T., Patkowski, A., Steffen, W. and Fischer, E.W. (1999) Light-scattering study of a supercooled epoxy resin. Physical Review E, 60, 3086-3096. doi:10.1103/PhysRevE.60.3086
[11] Zorn, R., Arbe, A., Colmenero, J., Frick, B., Richter, D. and Buchenau, U. (1995) Neutron scattering study of the picosecond dynamics of polybutadiene and polyisoprene. Physical Review E, 52, 781-795. doi:10.1103/PhysRevE.52.781
[12] Colmenero, J., Arbe, A. and Alegria, A. (1993) Crossover from Debye to non-Debye dynamical behavior of the α relaxation observed by quasielastic neutron scattering in a glass-forming polymer. Physical Review Letters, 71, 2603-2606. doi:10.1103/PhysRevLett.71.2603
[13] Kessairi, K., Capaccioli, S., Prevosto, D., Lucchesi, M., Sharifi, S. and Rolla, P.A. (2008) Interdependence of primary and johari-goldstein secondary relaxations in glass-forming systems. Journal of Physical Chemistry B, 1112, 4470.

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.