Share This Article:

Impact of drifts in edge plasma of small size divertor tokamak

Abstract Full-Text HTML XML Download Download as PDF (Size:170KB) PP. 131-135
DOI: 10.4236/ns.2012.42019    4,284 Downloads   7,417 Views  
Author(s)    Leave a comment

ABSTRACT

The effect of poloidal E × B and diamagnetic drifts in edge plasma of Small Size Divertor (SSD) Tokamak is studied with two-dimensional B2SO- LPS-0.5.2D fluid transport code. The simulation results show the following: 1) For normal toroidal magnetic field, the increasing of core plasma density leads to large divertor asymmetries due to poloidal E × B and diamagnetic drifts. 2) Switching on the E × B and diamagnetic drifts leads to large change in poloidal distribution of radial electric field and induced counter-clockwise circulation (flow) around the x-point. 3) Switching on the E × B and diamagnetic drifts leads to the structure of poloidal distribution of radial electric field is nonmonotonic which responsible for negative spikes. 4) Switching on the E × B and diamagnetic drifts in vicinity of separatrix leads to the structure of poloidal distribution of radial electric field that has viscous layer. 5) Switching on the E × B and diamagnetic drifts results in torque generation. This torque spins up the toroidal rotation. 6) The E × B drift velocity depends on the plasma temperature heating and doesn't depend on plasma density.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Bekheit, A. (2012) Impact of drifts in edge plasma of small size divertor tokamak. Natural Science, 4, 131-135. doi: 10.4236/ns.2012.42019.

References

[1] Hutchinson, I.H, LaBombard, B., Goetz, J.A., Lipschultz, B., McCracken, G.M., Snipes, J.A. and Terry, J.L. (1995) The effects of field reversal on the Alcator C-Mod divertor. Plasma Physics and Controlled Fusion, 37, 1389- 1406. doi:10.1088/0741-3335/37/12/004
[2] Tsois, N., Dorn, C., Kyriadakis, G., Markoulaki, M., Pfug, M., Schramm, G. and ASDEX-Upgread team (1999) A fast scaning langmuir probe system for ASDEX-Upgread Divertor. Journal of Nuclear Materials, 266-269, 1230- 1233. doi:10.1016/S0022-3115(98)00569-8
[3] Pitts, R.A, Andrew, P., Bonnin, X., Chankin, A.V, Corre, Y., Corrigan, G., Coster, D., Duran, I., Eich, T. and contributors to the EFDA-JET workprogramme (2005) Edge and divertor physics with reversed toroidal field in JET. Journal of Nuclear Materials, 337-339, 146-153. doi:10.1016/j.jnucmat.2004.10.111
[4] Ou, J., Zhu, S. (2007) Numerical predictions of the poloidal E × B drift in EAST. Journal of Nuclear Materials, 363, 633-637.
[5] Bekheit, A. H. and Gaber, W.H. (2010) B2SOLPS0.5.2D code simulations of sol flows and drifts effects in the edge plasma of small size divertor tokamak. Journal of Fusion Energy, 29, 261-266. doi:10.1007/s10894-009-9270-6
[6] Rognlien, T.D., Porter, G.D. and Ryutov, D.D. (1999) Influence of E × B and ?B drift terms in 2-D edge/SOL transport simulations. Journal of Nuclear Materials, 266- 269, 654-659. doi:10.1016/S0022-3115(98)00835-6
[7] Braginskii, S.I. (1965) Transport Processes in Plasma. Reviews of Plasma Physics, 1, 205.
[8] Rognlien, T.D. and Ryutov, D.D. (1998) Analysis of classical transport equations for the tokamak edge plasma. Contributions to Plasma Physics, 38, 152-157. doi:10.1002/ctpp.2150380123
[9] Rognlien, T.D., Ryutov, D.D., Mattor, N. and Porter, G.D. (1999) Two-dimensional electric fields and drifts near the magnetic separatrix in divertor tokamaks. Physics of Plasmas, 6, 1851. doi:10.1063/1.873488
[10] Radford, G.J., Chankin, A.V, Corrigan, G., Simonini, R., Spence, J. and Taroni, A. (1996) The particle and heat drift fluxes and their implementation into the EDGE2D transport code. Contributions to Plasma Physics, 36, 187-191. doi:10.1002/ctpp.2150360217
[11] Gerhauser, R., Zagórski, R., Gerhauser, H. and Claa?en, H.A. (1998) Numerical simulation of the TEXTOR edge plasma including drifts and impurities. Contributions to Plasma Physics, 38, 61-67. doi:10.1002/ctpp.2150380110
[12] Schneider, R., Rozhansky, V., Voskoboynikov, V. (2001) Simulation of tokamak edge plasma including self-consistent electric fields. Nuclear Fusion, 41, 387. doi:10.1088/0029-5515/41/4/305
[13] Bekheit, A.H. (2008) Simulation of small size divertor tokamak plasma edge including self-consistent electric fields. Journal of Fusion Energy, 27, 338-345. doi:10.1007/s10894-008-9148-z
[14] Rozhansky, V., Kaveeva, E., Voskoboynikov, S., Counsell, G., Kirk, A., Meyer, H., Coster, D., Conway, G., Schirmer, J., Schneider, R. and the ASDEX Upgrade Team (2006) Modelling of radial electric field profile for different divertor configurations. Plasma Physics and Controlled Fusion, 48, 1425-1435. doi:10.1088/0741-3335/48/9/011
[15] Rozhansky, V., Kaveeva, E., Voskoboynikov, S., Bonnin, X. and Schneider, R. (2004) Understanding transport barriers through modeling. Nuclear Fusion, 42, 1110. doi:10.1088/0029-5515/42/9/309
[16] Rozhansky, V. (2004) Understanding transport barriers through modeling. Plasma Physics and Controlled Fusion, 46, A1. doi:10.1088/0741-3335/46/5A/001
[17] Rozhansky, V., Rozhansky, V., Kaveeva, E., Voskoboynikov, S., Bonnin, X. and Schneider, R., et al. (2003) Modelling of electric fields in tokamak edge plasma and L-H transition. Nuclear Fusion, 43, 1.

  
comments powered by Disqus

Copyright © 2019 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.