Growth inhibition of a human colon carcinoma cell, COLO 201, by a natural product, Vitex agnus-castus fruits extract, in vivo and in vivo

Abstract

An extract from ripe fruit of Vitex agnus-castus (Vitex) has been used to treat patients with various obstetric and gynecological disorders in Europe. We have demonstrated that Vitex showed cytocidal effects on various types of cancer cell lines including a human colon carcinoma cell line, COLO 201. In this study, we extended our previous study to investigate the detailed mechanisms underlying cytocidal effects of Vi- tex on COLO 201. Furthermore, a possible clinical application of Vitex was also explored in vivo using nude mice xenografted with the cells. Treatment with Vitex induced apoptosis in COLO 201 in a time-dependent manner, accompanying with activa-tion of caspase-9 and -3, but not caspase-8. An inhibitor for c-Jun NH2-terminal kinase (JNK), but not p38 mitogen-activated protein kinase (MAPK), significantly suppressed the apoptosis induction along with caspase-3 activation. Endoplasmic reticulum (ER) stress-related genes were also upregulated by Vitex treatment. Most importantly, the in vivo efficacy of Vitex evaluated by assessing the tumor growth revealed that the administration of Vitex significantly suppressed tumor growth in COLO 201 xenografted mice. Collectively, current results suggest that apoptosis induction by Vitex in COLO 201 is mediated through the activation of JNK and caspase-9, -3 resulted from ER stress. Based on the current clinical application of Vitex, these results thus provide a new insight into the clinical use of Vitex and leave open a possibility of a new regimen as an alternative medicine approach for such devastating colon cancer treatment.

Share and Cite:

Imai, M. , Yuan, B. , Kikuchi, H. , Saito, M. , Ohyama, K. , Hirobe, C. , Oshima, T. , Hosoya, T. , Morita, H. and Toyoda, H. (2012) Growth inhibition of a human colon carcinoma cell, COLO 201, by a natural product, Vitex agnus-castus fruits extract, in vivo and in vivo. Advances in Biological Chemistry, 2, 20-28. doi: 10.4236/abc.2012.21003.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] Yiu, H.-Y., Whittemore, A.S. and Shibata, A. (2004) Increasing colorectal cancer incidence rates in Japan. International Journal of cancer, 109, 777-781. doi:10.1002/ijc.20030
[2] Jemal, A., Siegel, R., Ward, E., Murray, T., Xu, J. and Thun, M.J. (2007) Cancer statistics, 2007. CA: A Cancer Journal for Clinicians, 57, 43-66. doi:10.3322/canjclin.57.1.43
[3] Hurwitz, H., Fehrenbacher, L., Novotny, W., Cartwright, T., Hainsworth, J., Heim, W., Ber-lin, J., Baron, A., Griffing, S., Holmgren, E., Ferrara, N., Fyfe, G., Rogers, B., Ross, R. and Kabbinavar, F. (2004) Bevacizmub plus irinotechan, fluorouracil, and leucovorin for metastatic co-lorecatal cancer. The New England Journal of Medicine, 350, 2335-2342. doi:10.1056/NEJMoa032691
[4] Meyerhardt, J.A. and Mayer, R.J. (2005) Systemic therapy for colorectal cancer. The New England Journal of Medicine, 352, 476-487. doi:10.1056/NEJMra040958
[5] Cassileth, B., Yeung, K.S. and Gubili, J. (2008) Herbs and other botanicals in cancer patient care. Current Treat- ment Options in Oncology, 9, 109-116. doi:10.1007/s11864-008-0061-5
[6] Surh, Y.J. (2003) Cancer chemoprevention with dietary phytochemicals. Nature Reviews Cancer, 3, 768-780. doi:10.1038/nrc1189
[7] Berger, D., Schaffner, W., Schrader, E., Meier, B. and Brattstr?m, A. (2000) Efficacy of Vitex ag-nus-castus L extract Ze 440 in patients with pre-menstrual syn-drome (PMS). Archives of Gynecology and Obstetrics, 264, 150- 153. doi:10.1007/s004040000123
[8] Schellenberg, R. (2001) Treatment for the premenstrual syndrome with agnus castus fruit extract: Prospective, randomized, placebo controlled study. British Medical Jour- nal, 322, 134-137. doi:10.1136/bmj.322.7279.134
[9] Hirobe, C., Qiao, Z-S., Takeya, K. and Itokawa, H. (1997) Cytotoxic flavonoids from Vitex agnus-castus. Phytoche- mistry, 46, 521-524. doi:10.1016/S0031-9422(97)00127-1
[10] Ohyama, K., Akaike, T., Imai, M., Toyoda, H., Hirobe, C. and Bessho, T. (2005) Human gastric signet ring carcinoma (KATO-III) cell apoptosis induced by Vitex agnus-castus fruit extract through intracellular oxidative stress. The International Journal of Biochemistry & Cell Biology, 37, 1496-1510. doi:10.1016/j.biocel.2005.02.016
[11] Ohyama, K., Akaike, T., Hirobe, C. and Yamakawa, T. (2003) Cytotoxicity and apoptotic inducibility of Vitex agnus-castus fruits extract in cultured human normal and cancer cells and effect on growth. Biological & Pharmaceutical Bulletin, 26, 10-18. doi:10.1248/bpb.26.10
[12] Imai, M., Kikuchi, H., Denda, T., Ohyama, K., Hirobe, C. and Toyoda, H. (2009) Cytotoxic ef-fects of flavonoids against a human colon cancer derived cell line, COLO 201: A potential natural anti-cancer substance. Cancer Letters, 276, 74-80. doi:10.1016/j.canlet.2008.10.036
[13] Imai, M., Kikuchi, H., Yuan, B., Aihara, Y., Mizokuchi, A., Ohyama, K., Hirobe, C. and Toyoda, H. (2011) Enhanced growth inhibitory effect of 5-fluorouracil in combination with Vitex agnus-castus fruits extract against a human colon adeno-carcinoma cell line, COLO 201. Jour- nal of Chinese Clinical Medicine, 6, 14-19. http://www.cjmed.net/index.php/cjmed/article/view/109
[14] Semple, T.U., Quinn, L.A., Woods, L.K. and Moore, G.E. (1978) Tomor and lymphoid cell lines from a patient with carcinoma of the colon for a cytotoxicity model. Cancer Research, 38, 1345-1355. http://cancerres.aacrjournals.org/content/38/5/1345
[15] Takeuchi, R., Tsutsumi, H., Osaki, M., Haseyama, K., Mizue, N. and Chiba, S. (1998) Respiratory syncytial virus infection of human alveolar epithelial cells enhances interferon regulatory factor 1 and interleukin-1β-conver- ting enzyme gene expression but does not cause apoptosis. The Journal of Virology, 72, 4498-4502. http://jvi.asm.org/content/72/5/4498.full
[16] Dubrovskaya, V.A. and Wetterhahn, K.E. (1998) Effects of Cr (VI) on the expression of the oxidative stress genes in human lung cells. Carcinogenesis, 19, 1401-1407. doi:10.1093/carcin/19.8.1401
[17] Tajiri, S., Oyadomari, S., Yano, S., Morioka, M., Gotoh, T., Hamada, J.I., Ushio, Y. and Mori, M. (2004) Ischemia-induced neuronal cell death is me-diated by the endoplasmic reticulum stress pathway involving CHOP. Cell Death & Differentiation, 11, 403-415. doi:10.1038/sj.cdd.4401365
[18] Inoue, J. and Aramaki, Y. (2007) Cyclooxygenase-2 inhibitor promotes enhancement of antitumor responses by transcutaneous vaccination with cyto-sine-phosphate- gua- nosine-oligodeoxynucleotides and model tumor antigen. Journal of Investigative Dermatology, 127, 614-621. doi:10.1038/sj.jid.5700656
[19] Wada, T. and Penninger, J.M. (2004) Mitogen-activated protein kinases in apoptosis regulation. Oncogene, 23, 2838- 2849. doi:10.1038/sj.onc.1207556
[20] Li, J. and Holbrook, N.J. (2004) Elevated gadd153/chop expression and enhanced c-Jun N-terminal protein kinase activation sensi-tizes aged cells to ER stress. Experimental Gerontology, 39, 735-744. doi:10.1016/j.exger.2004.02.008
[21] Lee, H.J., Wang, C.J., Kuo, H.C., Chou, F.P., Jean, L.F. and Tseng, T.H. (2005) Induc-tion apoptosis of luteolin in human hepatoma HepG2 cells in-volving mitochondria translocation of Bax/Bak and activation of JNK. Toxicology and Applied Pharmacology, 203, 124-131. doi:10.1016/j.taap.2004.08.004
[22] Yang, S.-H., Chien, C.-M., Chang, L.-S. and Lin, S.-R. (2007) Involvement of c-jun N-terminal kinase in G2/M arrest and caspase-mediated apop-tosis induced by cardiotoxin III (Naja naja atra) in K562 leu-kemia cells. To- xicon, 49, 966-974. doi:10.1016/j.toxicon.2007.01.005
[23] Feng, Q., Cao, H.L., Xu, W., Li, X.R., Ren, Y.Q. and Du, L.F. (2011) Apoptosis induced by genipin in human leukemia K562 cells: Involvement of c-Jun N-terminal ki- nase in G2/M arrest. Acta Pharmacolo-gica Sinica, 32, 519-527. doi:10.1038/aps.2010.158
[24] Kang, S.J., Kim, B.M., Lee, Y.J., Hong, S.H. and Chung, H.W. (2009) Titanium dioxide nanoparticles induce apop- tosis through the JNK/p38-caspase-8-Bid pathway in phytohemaggluti-nin-stimulated human lymphocytes. Biochemi- cal and Biophysi-cal Research Communications, 386, 682- 687. doi:10.1016/j.bbrc.2009.06.097
[25] Boisvieux-Ulrich, E., Sourdeval, M. and Marano, F. (2005) CD437, a synthetic reti-noid, induces apoptosis in human respiratory epithelial cells via caspase-indepen- dent mitochondrial and caspase-8-dependent pathways both up-regulated by JNK signaling pathway. Experi-mental Cell Research, 307, 76-90. doi:10.1016/j.yexcr.2005.02.005
[26] Deng, Y., Ren, X., Yang, L., Lin, Y. and Wu, X. (2003) A JNK-dependent pathway is required for TNFalpha-induced apoptosis. Cell, 115, 61-70. doi:10.1016/S0092-8674(03)00757-8
[27] Butt, A.J., Dickson, K.A., Jambazov, S. and Baxter, R.C. (2005) Enhancement of tumor necrosis factor-alpha-in- duced growth inhibition by insulin-like growth factor- binding protein-5 (IGFBP-5), but not IGFBP-3 in human breast cancer cells. Endocrinology, 146, 3113-3122. doi:10.1210/en.2004-1408
[28] Kim, H.P., Pae, H.O., Back, S.H., Chung, S.W., Woo, J.M., Son, Y. and Chung, H.T. (2011) Heme oxygenase-1 comes back to endoplasmic reticulum. Bi-ochemical and Biophysical Research Communications, 404, 1-5. doi:10.1016/j.bbrc.2010.11.067
[29] Liu, X.M., Peyton, K.J., Ensenat, D., Wang, H., Schafer, A.I., Alam, J. and Durante, W. (2005) Endoplasmic reticulum stress stimulates heme oxyge-nase-1 gene expression in vascular smooth muscle. Role in cell survival. The Journal of Biological Chemistry, 280, 872-877. doi:10.1074/jbc.M410413200
[30] Berridge, M.J. (2002) The endoplasmic reticulum: A multifunctional signaling organelle. Cell Calcium, 32, 235- 249. doi:10.1016/S0143416002001823
[31] Urano, F., Wang, X., Bertolotti, A., Zhang, Y., Chung, P., Harding, H.P. and Ron, D. (2000) Coupling of stress in the ER to activation of JNK protein kinases by transmembrane protein kinase IRE1. Science, 287, 664-666. doi:10.1126/science.287.5453.664
[32] Yoneda, T., Imaizumi, K., Oono, K., Yui, D., Gomi, F., Katayama, T. and Tohyama, M. (2001) Activation of caspase-12, an endoplastic reticulum (ER) resident caspase, through tumor necrosis factor recep-tor-associated factor 2-dependent mechanism in response to the ER stress. The Journal of Biological Chemistry, 276, 13935-13940. doi:10.1074/jbc.M010677200
[33] Kurisu, J., Honma, A., Miyajima, H., Kondo, S., Okumura, M. and Imaizumi, K. (2003) MDG1/ERdj4, an ER- resident DnaJ family member, suppresses cell death induced by ER stress. Genes to Cells, 8, 189-202. doi:10.1046/j.1365-2443.2003.00625.x
[34] Zhou, Y., Liu, Y.E., Cao, J., Zeng, G., Shen, C., Li, Y., Zhou, M., Chen, Y., Pu, W., Potters, L. and Shi, Y.E. (2009) Vitexins, nature-derived lignan compounds, induce apoptosis and suppress tumor growth. Clinical Cancer Research, 15, 5161-5169. doi:10.1158/1078-0432.CCR-09-0661

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.