Structure Change of Polyethersulfone Hollow Fiber Membrane Modified with Pluronic F127, Polyvinylpyrrolidone, and Tetronic 1307
Nasrul Arahman, Bastian Arifin, Sri Mulyati, Yoshikage Ohmukai, Hideto Matsuyama
DOI: 10.4236/msa.2012.32011   PDF   HTML     6,731 Downloads   12,193 Views   Citations


Hydrophilic polyethersulfone (PES) hollow fiber membranes were prepared via non-solvent induced phase separation (NIPS) by addition of polymeric additives as a membrane modifying agent. The effect of the addition of hydrophilic surfactant Pluronic F127, Polyivinylpyrrolidone (PVP), and Tetronic 1307 on the performance of the final PES hollow-fiber membrane was investigated. The morphology of fabricated hollow fiber membrane observed by scanning electron microscopy (SEM) indicated that all of membrane had a skin layer on the surface and finger like macrovoid structure inside the hollow fiber. The addition of 5 wt% polymeric surfactant on the polymer solution results in membrane with improved length and number of macrovoid structure. Sponge formation both near inner surface and near outer surface of hollow fiber membrane was another impact of addition of polymeric additives, which is led to decrease of water permeability of these membrane. Water contact angle measurement was performed to investigate the hydrophilicity property of resulted membrane. It is confirmed that the modified PES hollow fiber membranes had lower water contact angle than that of the original membrane, which indicate that the modified PES membrane with additives has high hydrophilic.

Share and Cite:

N. Arahman, B. Arifin, S. Mulyati, Y. Ohmukai and H. Matsuyama, "Structure Change of Polyethersulfone Hollow Fiber Membrane Modified with Pluronic F127, Polyvinylpyrrolidone, and Tetronic 1307," Materials Sciences and Applications, Vol. 3 No. 2, 2012, pp. 72-77. doi: 10.4236/msa.2012.32011.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] J. H. Green and M. Tylla, “A Comparison of Ultrafiltration on Various River Waters,” Desalination, Vol. 119, No. 1-3, 1998, pp. 79-84. doi:10.1016/S0011-9164(98)00114-3
[2] X. Guo, Z. Zhang, L. Fang and L. Su, “Study on Ultrafiltration for Surface Water by a Polyvinylchloride Hollow Fiber Membrane,” Desalination, Vol. 238, No. 1-3, 2009, pp. 183-191. doi:10.1016/j.desal.2007.11.064
[3] S. J. Xia, X. Li, J. Yao, B. Z. Dong and J. J. Yao, “Application of Membrane Techniques to Produce Drinking Water in China,” Desalination, Vol. 222, No. 1-3, 2008, pp. 497-501. doi:10.1016/j.desal.2007.01.142
[4] S. Nakatsuka, I. Nakate and T. Miyano, “Drinking Water Treatment by Using Ultrafiltration Hollow Fiber Membranes,” Desalination, Vol. 106, 1996, pp. 55-61.
[5] R. W. Baker, “Membrane Technology and Applications,” John Wiley & Sons, Hoboken, 2004. doi:10.1002/0470020393
[6] S. S. Madaeni, M. Falsafi and N. Ghaemi, “A Novel Method for Preparation of Low-Fouling Membranes: Surface Coating by Extracted Wax from Leafy Cabbage,” Desalination, Vol. 283, 2011, pp. 148-155. doi:10.1016/j.desal.2011.03.050
[7] D. Wandera, S. R. Wickramasinghe and S. M. Husson, “Modification and Characterization of Ultrafiltration Membranes for Treatment of Produced Water,” Journal of Membrane Science, Vol. 373, No. 1-2, 2011, pp. 178- 188. doi:10.1016/j.memsci.2011.03.010
[8] C. H. Loh, R. Wang, L. Shi and A. G. Fane, “Fabrication of High Performance Polyethersulfone UF Hollow Fiber Membranes Using Amphiphilic Pluronic Block Copolymers as Pore-Forming Additives,” Journal of Membrane Science, Vol. 380, No. 1-2, 2011, pp. 114-123. doi:10.1016/j.memsci.2011.06.041
[9] M. Mulder, “Basic Principles of Membrane Technology,” 2nd Edition, Kluwer Academic Publishers, London, 1996. doi:10.1007/978-94-009-1766-8
[10] P. van de Witte, P. J. Dijkstra, J. W. A. van den Berg and J. Feijen, “Phase Separation Processes in Polymer Solutions in Relation to Membrane Formation,” Journal of Membrane Science, Vol. 117, No. 1-2, 1996, pp. 1-31. doi:10.1016/0376-7388(96)00088-9
[11] H. Matsuyama, K. Nakagawa, T. Maki and M. Teramoto, “Studies on Phase Separation Rate in Porous Polyimide Membrane Formation by Immersion Precipitation,” Journal of Applied Polymer Science, Vol. 90, No. 1, 2003, pp. 292-296. doi:10.1002/app.12783
[12] A. Rahimpour and S. S. Madaeni, “Improvement of Performance and Surface Properties of Nano-Porous Polyethersulfone (PES) Membrane Using Hydrophilic Monomers as Additives in the Casting Solution,” Journal of Membrane Science, Vol. 360, No. 1-2, 2010, pp. 371-379. doi:10.1016/j.memsci.2010.05.036
[13] X. Fu, H. Matsuyama and H. Nagai, “Structure Control of Asymmetric Poly(vinyl butyral)-TiO2 Composite Membrane Prepared by Nonsolvent Induced Phase Separation,” Journal of Applied Polymer Science, Vol. 108, No. 2, 2008, pp. 713-723. doi:10.1002/app.27711
[14] J. Marchese, M. Ponce, N. A. Ochoa, P. Prádanos, L. Palacio and A. Hernández, “Fouling Behaviour of Polyethersulfone UF Membranes Made with Different PVP,” Journal of Membrane Science, Vol. 211, No. 1, 2003, pp. 1-11. doi:10.1016/S0376-7388(02)00260-0
[15] N. A. Ochoa, P. Prádanos, L. Palacio, C. Pagliero, J. Marchese and A. Hernández, “Pore Size Distributions Based on AFM Imaging and Retention of Multidisperse Polymer Solutes Characterisation of Polyethersulfone UF Membranes with Dopes Containing Different PVP,” Journal of Membrane Science, Vol. 187, No. 1-2, 2001, pp. 227-237. doi:10.1016/S0376-7388(01)00348-9
[16] Y. Wang and B. Shi, “Concentration of Gelatin Solution with Polyethersulfone Ultrafiltration Membranes,” Food and Bioproducts Processing, Vol. 89, No. 3, 2011, pp. 163-169. doi:10.1016/j.fbp.2010.06.004
[17] B. Chakrabarty, A. K. Ghoshal and M. K. Purkait, “Preparation, Characterization and Performance Studies of Polysulfone Membranes Using PVP as an Additive,” Journal of Membrane Science, Vol. 315, No. 1-2, 2008, pp. 36-47. doi:10.1016/j.memsci.2008.02.027
[18] Y. Q. Wang, Y. L. Su, Q. Sun, X. L. Ma and Z. Y. Jiang, “Generation of Anti-Biofouling Ultrafiltration Membrane Surface by Blending Novel Branched Amphiphilic Polymers with Polyethersulfone,” Journal of Membrane Science, Vol. 286, No. 1-2, 2006, pp. 228-236. doi:10.1016/j.memsci.2006.09.040
[19] Y. Wang, Y. Su, Q. Sun, X. Ma, X. Ma and Z. Jiang, “Improved Permeation Performance of Pluronic F127-Polyethersulfone Blend Ultrafiltration Membranes,” Journal of Membrane Science, Vol. 282, No. 1-2, 2006, pp. 44-51. doi:10.1016/j.memsci.2006.05.005
[20] Y. Q. Wang, T. Wang, Y. L. Su, F. B. Peng, H. Wu and Z. Y. Jiang, “Remarkable Reduction of Irreversible Fouling and Improvement of the Permeation Properties of Poly (ether sulfone) Ultrafiltration Membranes by Blending with Pluronic F127,” Langmuir, Vol. 21, No. 25, 2005, pp. 11856-11862. doi:10.1021/la052052d
[21] N. Arahman, T. Maruyama, T. Sotani and H. Matsuyama, “Fouling Reduction of a Poly(ether sulfone) Hollow-Fiber Membrane with a Hydrophilic Surfactant Prepared via Non-Solvent-Induced Phase Separation,” Journal of Applied Polymer Science, Vol. 111, No. 3, 2009, pp. 1653-1658. doi:10.1002/app.29149
[22] N. Arahman, T. Sotani and H. Matsuyama, “Effect of the Addition of the Surfactant Tetronic 1307 on Poly(ether sulfone) Porous Hollow-Fiber Membrane Formation,” Journal of Applied Polymer Science, Vol. 108, No. 5, 2008, pp. 3411-3418. doi:10.1002/app.27940
[23] A. Rahimpour, S. S. Madaeni and Y. Mansourpanah, “The Effect of Anionic, Non-Ionic and Cationic Surfactants on Morphology and Performance of Polyethersulfone Ultra?ltration Membranes for Milk Concentration,” Journal of Membrane Science, Vol. 296, No. 1-2, 2007, pp. 110-121. doi:10.1016/j.memsci.2007.03.029
[24] A. M. Mimi Sakinah, A. F. Ismaila, R. Md. Illias and O. Hassan, “Fouling Characteristics and Autopsy of a PES Ultrafiltration Membrane in Cyclodextrins Separation,” Desalination, Vol. 207, No. 1-3, 2007, pp. 227-242. doi:10.1016/j.desal.2006.08.007
[25] A. V. R. Reddy and H. R. Patel, “Chemically Treated Polyethersulfone/Polyacrylonitrile Blend Ultrafiltration Membranes for Better Fouling Resistance,” Desalination, Vol. 221, No. 1-3, 2008, pp. 313-323. doi:10.1016/j.desal.2007.01.089

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.