Effect of Ge Incorporation on Bandgap and Photosensitivity of Amorphous SiGe Thin Films

Abstract

We investigated the structural and optical properties of amorphous-SiGe thin films synthesized via a low-cost, high-growth rate deposition method. Films were formed by e-beam evaporation of mixed pellets of Si and Ge. Film composition was varied by changing the weight ratio of Si and Ge pellets mixture. Films were amorphous with a composition uniform. Ge-rich films are in tensile stress, while Si-rich films are in compressive stress. As the Ge fraction increases (from 22 at.% to 94 at.%), the optical bandgap decreases (from 1.7 eV to 0.9 eV) and the photosensitivity of the films extends into IR band of solar spectrum. By changing the weighted ratio of the evaporation source mixture, the bandgap and optical sensitivity of a-SiGe films can be easily tuned. Our studies prove that a-SiGe films are a tunable absorber. This can be used for photo-detector, photovoltaic and microelectronic applications to extend the spectral response.

Share and Cite:

G. Pethuraja, R. Welser, A. Sood, C. Lee, N. Alexander, H. Efstathiadis, P. Haldar and J. Harvey, "Effect of Ge Incorporation on Bandgap and Photosensitivity of Amorphous SiGe Thin Films," Materials Sciences and Applications, Vol. 3 No. 2, 2012, pp. 67-71. doi: 10.4236/msa.2012.32010.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] D. V. Lang, R. People, J. C. Bean and A. M. Sergent, “Measurement of the Band Gap of GexSi1-x/Si StrainedLayer Heterostructures,” Applied Physics Letters, Vol. 47, No. 12, 1985, pp. 1333-1335. doi:10.1063/1.96271
[2] N. Usami, T. Ichitsubo, T. Ujihara, T. Takahashi, K. Fujiwara, G. Sazaki and K. Nakajima, “Influence of the Elastic Strain on the Band Structure of Ellipsoidal SiGe Coherenty Embedded in the Si Matrix,” Journal of Applied Physics, Vol. 94, No. 2, 2003, pp. 916-920. doi:10.1063/1.1580194
[3] R. Braunstein, A. R. Moore and F. Herman, “Intrinsic Optical Absorption in Germanium-Silicon Alloys,” Physical Review, Vol. 109, No. 3, 1958, pp. 695-710. doi:10.1103/PhysRev.109.695
[4] K. H. Jun, J. K. Rath and R. E. I. Schropp, “Enhanced light-Absorption and Photo-Sensitivity in Amorphous Silicon Germanium/Amorphous Silicon Multilayer,” Solar Energy Materials & Solar Cells, Vol. 74, No. 1-4, 2002, pp. 357-363. doi:10.1016/S0927-0248(02)00095-8
[5] K. Nakajima, K. Fujiwara, W. Pan, N. Usami and T. Shishido, “Growth and Properties of SiGe Multicrystals with Microscopic Compositional Distribution and Their Applications for High-Efficiency Solar Cells,” Journal of Crystal Growth, Vol. 275, No. 1-2, 2005, pp. e455-e460. doi:10.1016/j.jcrysgro.2004.11.019
[6] E. Maruyama, S. Okamoto, A. Terakawa, W. Shinohara, M. Tanaka and S. Kiyama, “Towards Stabilized 10% Efficiency of Large-Area (>5000 cm2) a-Si/a-SiGe Tandem Solar Cells Using High-Rate Deposition,” Solar Energy Materials & Solar Cells, Vol. 71, No. 1-4, 2002, pp. 339-349. doi:10.1016/S0927-0248(02)00093-4
[7] P. Wickboldt, D. Pang, W. Paul, J. H. Chen, F. Zhong, C.-C. Chen, J. D. Cohen and D. L. Williamson, “High Performance Glow Discharge a-Si1-xGex:H of Large x,” Journal of Applied Physics, Vol. 81, No. 9, 1997, pp. 6252-6267. doi:10.1063/1.364413
[8] M. Serenyi, J. Betko, A. Nemcsics, N. Q. Khanh, D. K. Basa and M. Morvic, “Study on the RF Sputtered Hydrogenated Amorphous Silicon-Germanium Thin Films,” Microelectronics Reliability, Vol. 45, No. 7-8, 2005, pp. 1252-1256. doi:10.1016/j.microrel.2005.02.008
[9] C. Eisele, M. Berger, M. Nerding, H. P. Strunk, C. E. Nebel and M. Stutzmann, “Laser-Crystallized Microcrystalline SiGe Alloy for Thin Film Solar Cells,” Thin Sold Films, Vol. 427, No. 1-2, 2003, pp. 176-180. doi:10.1016/S0040-6090(02)01216-6
[10] D. Dwyer, R. Sun, H. Efstathiadis and P. Haldar, “Characterization of Chemical Bath Deposited Buffer Layers for Thin Film Solar Cell Applications,” Physica Status Solidi (A), Vol. 207, No. 10, 2010, pp. 2272-2278. doi:10.1002/pssa.201025522
[11] C.-Y. Tsao, Z. Liu, X. Hao and M. A. Green, “In Situ Growth of Ge-Rich Poly-SiGe:H Thin Films on Glass by RF Magnetron Sputtering for Photovoltaic Applications,” Applied Surface Science, Vol. 257, No. 9, 2011, pp. 4354-4359. doi:10.1016/j.apsusc.2010.12.058
[12] Y. Azuma, N. Usami, K. Fujiwara, T. Ujihara and K. Nakajima, “A Simple Approach to Determine Preferential Growth Orientation Using Multiple Seed Crystals with Random Orientations and Its Utilization for Seed Optimization to Restrain Polycrystallization of SiGe Bulk Crystal,” Journal of Crystal Growth, Vol. 276, No. 3-4, 2005, pp. 393-400. doi:10.1016/j.jcrysgro.2004.11.430
[13] W. K. Choi, L. K. The, L. K. Bera and W. K. Chim, “Microstructural Characterization of rf Sputtered Polycrystal- line Silicon Germanium Films,” Journal of Applied Physics, Vol. 91, No. 1, 2002, pp. 444-449. doi:10.1063/1.1423388
[14] M. K. Bhan, L. K. Malhotra and C. Kashyap, “Electrical and Optical Properties of Hydrogenated Amorphous Silicon Germnanium (a-Si1-xGex:H) Films Prepared by Reactive Ion Beam Sputtering,” Journal of Applied Physics, Vol. 66, No. 6, 1989, pp. 2528-2537. doi:10.1063/1.344243
[15] C.-C. Wang, C.-Y. Liu, S.-Y. Lien, K.-W. Weng, J.-J. Huang, C.-F. Chen and D.-S. Wuu, “Hydrogenated Amorphous Silicon-Germanium Thin Films with a Narrow Band Gap for Silicon-Based Solar Cells,” Applied Physics, Vol. 11, No. 1, 2011, pp. S50-S53.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.