Styrene Epoxidation in Aqueous over Triazine-Based Microporous Polymeric Network as a Metal-Free Catalyst


Tirazine based microporous polymeric (TMP) network was found to be an efficient metal-free catalyst for the epoxidation of styrene. The reactions were performed in water as an environmentally benign medium using H2O2 as a green oxidant at ambient temperature. The reaction afforded higher yield with 90% conversion of styrene and 98% selectivity to styrene oxide in 6 h. The triazine based microporous polymeric network can be readily recovered and reused up to 4 cycles without significant loss in catalytic activity and selectivity.

Share and Cite:

M. Ansari, E. Jeong and S. Park, "Styrene Epoxidation in Aqueous over Triazine-Based Microporous Polymeric Network as a Metal-Free Catalyst," Green and Sustainable Chemistry, Vol. 2 No. 1, 2012, pp. 1-7. doi: 10.4236/gsc.2012.21001.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] S. Fioravanti, L. Pellacani, P. A. Tardella and M. C. Ver- gari, “Facile and Highly Stereoselective One-Pot Synthe- sis of Either (E)- or (Z)-Nitro Alkenes,” Organic Letters, Vol. 10, No. 7, 2008, pp. 1449-1451. doi:10.1021/ol800224k
[2] C. D. Gutsche, R. S. Buriks, K. Nowotny and H. Grassner, “Tertiary Amine Catalysis of the Aldol Condensation,” Journal of the American Chemical Society, Vol. 84, No. 19, 1962, pp. 3775-3777. doi:10.1021/ja00878a040
[3] I. G. Rios, E. Novarino, S. van der Veer, B. Hessen and M. W. Bouwkamp, “Amine Catalyzed Solvent C-H Bond Activation as Deactivation Route for Cationic Decame- thylzirconocene Olefin Polymerization Catalysts,” Jour- nal of the American Chemical Society, Vol. 131, No. 46, 2009, pp. 16658-16659. doi:10.1021/ja908330v
[4] I. T. Glover, G. W. Cushing and C. M. Windsor, “Amine- catalyzed Isomerization of Diethylmaleate to Diethylfu- marate,” Journal of Chemical Education, Vol. 55, No. 12, 1978, p. 812. doi:10.1021/ed055p812
[5] Y. Imada, H. Iida, S. Ono and S.-I. Murahashi, “Flavin Catalyzed Oxidations of Sulfides and Amines with Mo- lecular Oxygen,” Journal of the American Chemical So- ciety, Vol. 125, No. 10, 2003, pp. 2868-2869. doi:10.1021/ja028276p
[6] V. K. Aggarwal, C. Lopin and F. Sandrinelli, “New Insights in the Mechanism of Amine Cata-lyzed Epoxidation: Dual Role of Protonated Ammonium Salts as Both Phase Transfer Catalysts and Activators of Oxone,” Journal of the American Chemical Society, Vol. 125, No. 25, 2003, pp. 7596-7601. doi:10.1021/ja0289088
[7] A. C. Blanc, S. Valle, G. Renard, D. Brunel, D. J. Mac- quarrie and C. R. Quinn, “The Preparation and Use of Novel Immobilised Guani-dine Catalysts in Base-Cata- lysed Epoxidation and Condensa-tion Reactions,” Green Chemistry, Vol. 2, No. 6, 2000, pp. 283-288. doi:10.1039/b005929n
[8] M. Wang, L. X. Gao, W. P. Mai, A. X. Xia, F. Wang and S. B. Zhang, “Enantioselective Iodolac-tonization Catalyzed by Chiral Quaternary Ammonium Salts Derived from Cinchonidine,” The Journal of Organic Chemistry, Vol. 69, No. 8, 2004, pp. 2874-2876. doi:10.1021/jo035719e
[9] A. G. Wenzel and E. N. Jacobsen, “Asymmetric Catalytic Mannich Reactions Catalyzed by Urea Derivatives: En- antioselective Synthesis of β-Aryl-β-Amino Acids,” Jour- nal of the American Chemical Society, Vol. 124, No. 44, 2002, pp. 12964-12965. doi:10.1021/ja028353g
[10] A. Cordova, W. Zou, I. Ibrahem, E. Reyes, M. Engqvist and W.-W. Liao, “Acyclic Amino Acid-Catalyzed Direct Asymmetric Aldol Reactions: Alanine, the Simplest Ste- reoselective Organo-catalyst,” Chemical Communications, No. 28, 2005, pp. 3586-3588.
[11] R. Luque and D. J. Macquarrie, “Efficient Solvent- and Metal-Free Sonogashira Protocol Catalysed by 1,4-Diaza- bicyclo(2.2.2) Octane (DABCO),” Organic & Bio-mole- cular Chemistry, Vol. 7, No. 8, 2009, pp. 1627-1632. doi:10.1039/b821134pR
[12] E. Prasetyanto, S.-M. Jeong and S.-E. Park, “Asymmetric Catalysis in Confined Space Provided by L- Proline Func- tionalized Mesoporous Silica with Plugs in the Pore,” Topics in Catalysis, Vol. 53, No. 3-4, 2010, pp. 192-199. doi:10.1007/s11244-009-9417-8
[13] G. Chehardoli and M. A. Zolfigol, “Melamine Hydrogen Peroxide (MHP): Novel and Efficient Reagent for the Chemo- and Homoselective and Tran-sition Metal-Free Oxidation of Thiols and Sulfides,” Phosphorus, Sulfur and Silicon and the Related Elements, Vol. 185, No, 1, 2010, pp. 193-203. doi:10.1080/10426500902758386
[14] G. B. Payne, P. H. Deming and P. H. Williams, “Reac- tions of Hydrogen Peroxide. VII. Alkali-Catalyzed Epoxi- dation and Oxidation Using a Nitrile as Co-Reactant,” The Journal of Or-ganic Chemistry, Vol. 26, No. 3, 1961, pp. 659-663. doi:10.1021/jo01062a004
[15] M. L. A. von Holleben, P. R. Livotto and C. M. Schuch, “Experimental and Theoretical Study on the Reactivity of the R-CN/H2O2 System in the Epoxidation of Unfunc- tionalized Olefins,” Journal of the Brazilian Chemical Society, Vol. 12, No. 1, 2001, pp. 42-46. doi:10.1590/S0103-50532001000100005
[16] D. E. Richard-son, H. Yao, K. M. Frank and D. A. Bennett, “Equilibria, Ki-netics, and Mechanism in the Bicarbonate Activation of Hydro-gen Peroxide: Oxidation of Sulfides by Peroxymonocarbonate,” Journal of the American Chemi- cal Society, Vol. 122, No. 8, 2000, pp. 1729-1739. doi:10.1021/ja9927467
[17] H. Yao and D. E. Richardson, “Epoxidation of Alkenes with Bicarbonate-Activated Hydrogen Peroxide,” Journal of the American Chemical Society, Vol. 122, No. 13, 2000, pp. 3220-3221. doi:10.1021/ja993935s
[18] B. S. Lane and K. Burgess, “Metal-Catalyzed Epoxida- tions of Al-kenes with Hydrogen Peroxide,” Chemical Re- views, Vol. 103, No. 7, 2003, pp. 2457-2474. doi:10.1021/cr020471z
[19] K.-H. Tong, K.-Y. Wong and T. H. Chan, “Manganese/ Bicarbonate-Catalyzed Epoxidation of Lipophilic Alkenes with Hydrogen Peroxide in Ionic Liquids,” Organic Let- ters, Vol. 5, No. 19, 2003, pp. 3423-3425.
[20] M. G. Schwab, B. Fassbender, H. W. Spiess, A. Thomas, X. Feng and K. Mullen, “Catalyst-free Preparation of Me- lamine-Based Microporous Polymer Networks through Schiff Base Chemistry,” Journal of the American Chemi- cal Society, Vol. 131, No. 21, 2009, pp. 7216-7217. doi:10.1021/ja902116f
[21] E. A. Prasetyanto, M. B. Ansari, B.-H. Min and S.-E. Park, “Melamine Tri-Silsesquioxane Bridged Periodic Mesopo- rous Organosilica as an Efficient Metal-Free Catalyst for CO2 Activation,” Catalysis Today, Vol. 158, No. 3-4, 2010, pp. 252-257. doi:10.1016/j.cattod.2010.03.081
[22] I. Kaya and M. YildIrIm, “Synthesis and Characterization of Graft Copolymers of Mela-mine: Thermal Stability, Electrical Conductivity, and Optical Properties,” Synthe- tic Metals, Vol. 159, No. 15-16, 2009, pp. 1572-1582. doi:10.1016/j.synthmet.2009.04.019
[23] J. Weber, M. Anto-nietti and A. Thomas, “Microporous Networks of High-Performance Polymers: Elastic Defor- mations and Gas Sorption Properties,” Macromolecules, Vol. 41, No. 8, 2008, pp. 2880-2885. doi:10.1021/ma702495r
[24] R. Breslow, “Structure and Reac-tivity in Aqueous Solu- tion,” In: C. J. Cramer and D. G. Truhlar, Eds., Structure and Reactivity in Aqueous Solution, Vol. 568, American Chemical Society, Washington DC, 1994, pp. 291-302
[25] R. N. Butler and A. G. Coyne, “Water: Nature’s Reaction Enforcer—Comparative Effects for Organic Synthesis ‘In- Water’ and ‘On-Water’,” Chemical Reviews, Vol. 110, No. 10, 2010, pp. 6302-6337. doi:10.1021/cr100162c

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.