Scientific Research

An Academic Publisher

**Spin, the Classical Theory** ()

With the development of local gauge theories of gravitation, it became evident that intrinsic spin was an integral part of the theory. This gave spin a classical formulation that predicted the existence of a new kind of field, the torsion field. To date only one class of experiments has been developed to detect this field, a search for a long range dipole force. In this article, the torsion equations are de-coupled from the curved space of general relativity derived from basic principles using vector calculus and the theory of electromagnetism as a guide. The results are written in vector form so that they are readily available to experimentalists, paving the way for new kinds of experiments.

Keywords

Share and Cite:

R. Hammond, "Spin, the Classical Theory,"

*Journal of Modern Physics*, Vol. 3 No. 1, 2012, pp. 1-8. doi: 10.4236/jmp.2012.31001.Conflicts of Interest

The authors declare no conflicts of interest.

[1] | R. T. Hammond, “New Fields in General Relativity,” Contemporary Physics, Vol. 36, No. 2, 1995, pp. 103-114. doi:10.1080/00107519508222143 |

[2] | F. W. Hehl, P. von der Heyde, G. D. Kerlick and J. M. Nester, “General Relativity with Spin and Torsion: Foundations and Prospects,” Reviews of Modern Physics, Vol. 48, No. 3, 1976, pp. 393-416. doi:10.1103/RevModPhys.48.393 |

[3] | C. N. Yang and R. L. Mills, “Conservation of Isotopic Spin and Isotopic Gauge Invariance,” Physical Review, Vol. 96, No. 1, 1954, pp. 191-195. doi:10.1103/PhysRev.96.191 |

[4] | F. W. Hehl, J. D. McCrea, E. W. Mielke and Y. Ne’eman, “Metric-Affine Gauge Theory of Gravity: Field Equations, Noether Identities, World Spinors, and Breaking of Dilation Invariance,” Physics Reports, Vol. 258, No. 1-2, 1995, pp. 1-171. doi:10.1016/0370-1573(94)00111-F |

[5] | M. Kalb and P. Ramond, “Classical Firect Interstring Action,” Physical Review, Vol. 9, 1974, pp. 2273-2284. |

[6] | J. Scherk and J. H. Schwarz, “Dual Models and the Geometry of Space-Time,” Physics Letters, Vol. B52, 1974, pp. 347-350. |

[7] | R. T. Hammond, “The Necessity of Torsion,” General Relativity and Gravitation, Vol. 42, No. 10, 2010, pp. 2345-2348. doi:10.1007/s10714-010-1045-x |

[8] | R. T. Hammond, “Dynamic Torsion from a Linear Lagrangian,” General Relativity and Gravitation, Vol. 22, 1990, p. 451. |

[9] | R. T. Hammond, “Spin, Torsion, Forces,” General Relativity and Gravitation, Vol. 26, No. 3, 1994, pp. 247-263. doi:10.1007/BF02108005 |

[10] | J. D. Jackson, “Classical Electrodynamics,” 2nd Edition, John Wiley & Sons, New York, 1975. |

[11] | B. Zweibach, “A First Course in String Theory,” Cambridhe University Press, Cambridge, 2004. |

[12] | R. T. Hammond, “Strings Have Spin,” General Relativity and Gravitation, Vol. 32, No. 2, 2000, pp. 347-351. doi:10.1023/A:1001948028584 |

[13] | T. C. P. Chui and W.-T. Ni, “Experimental Search for an Anomalous Spin-Spin Interaction between Electrons,” Physical Review Letters, Vol. 71, No. 20, 1993, pp. 3247- 3250. doi:10.1103/PhysRevLett.71.3247 |

[14] | W.-T. Ni, et al., “Search for an Axionlike Spin Coupling Using a Paramegnetic Salt with a dc SQUID,” Physical Review Letters, Vol. 82, No. 12, 1999, pp. 2439-2442. doi:10.1103/PhysRevLett.82.2439 |

[15] | R. T. Hammond, “Upper Bound of Torsion Coupling Constants,” Physical Review D, Vol. 52, No. 12, 1995, pp. 6918-6921. doi:10.1103/PhysRevD.52.6918 |

[16] | B. E. Lautrup and A. Peterman, “Recent Developments in the Comparison between Theory and Experiments in Quantum Electrodynamics,” Physics Reports, Vol. 3, No. 4, 1972, pp. 193-259. doi:10.1016/0370-1573(72)90011-7 |

[17] | S.-X. Qui and C.-G. Shao, “Spin-Rotation Coupling in Graviation with Torsion,” Communications in Theoretical Physics, Vol. 48, No. 3, 2007, pp. 473-476. doi:10.1088/0253-6102/48/3/019 |

[18] | R. T. Hammond, “Helicity Flip Cross Section from Gravitation with Torsion,” Classical and Quantum Gravity, Vol. 13, No. 7, 1996, p. 1691. doi:10.1088/0264-9381/13/7/002 |

[19] | R. T. Hammond, “Nonlinear Quantum Equation from Curved Space,” Physics Letters A, Vol. 184, No. 6, 1994, pp. 409-412. doi:10.1016/0375-9601(94)90514-2 |

[20] | R. T. Hammond, “Torsion Gravity,” Reports on Progress in Physics, Vol. 65, No. 5, 2002, pp. 599-649. doi:10.1088/0034-4885/65/5/201 |

[21] | E. Cartan and A. Einstein, “Letters of Absolute Parallelism,” Princeton University Press, Princeton, 1975. |

Copyright © 2020 by authors and Scientific Research Publishing Inc.

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.