Determination of Essential (Ca, Fe, I, K, Mo) and Toxic Elements (Hg, Pb) in Brazilian Rice Grains and Estimation of Reference Daily Intake


The levels of Hg and Pb (toxic elements) and Ca, Fe, I, K, Mo (essential elements) were measured in 44 Brazilian rice samples divided among white polished (W), parboiled white (PW) and parboiled brown (PB). Rice grains were ana- lyzed by inductively coupled plasma mass spectrometry (ICP-MS). Concentrations of toxic elements varied from 0.3 to 13.4 and 0.4 to 14.5 ng?g–1 for Hg and Pb, respectively. The values for essential elements were in the same range of those for rice produced in other countries. In general parboiled samples presented higher levels of all elements in study compared to white samples. The Estimated Daily Intake through rice consumption was 0.44 μg for Pb, 0.22 μg for Hg, 0.65 μg for I, 39.5 μg for Mo, 0.43 mg for Fe, 4.1 mg for Ca and 88.9 mg for K. Our findings demonstrated that rice can contribute significantly to the RDIs of molybdenum and potassium, but it can not be considered an important source of I, Fe and Ca. Moreover, the estimated dail

Share and Cite:

B. Batista, L. Nacano, R. Freitas, V. Oliveira-Souza and F. Barbosa, "Determination of Essential (Ca, Fe, I, K, Mo) and Toxic Elements (Hg, Pb) in Brazilian Rice Grains and Estimation of Reference Daily Intake," Food and Nutrition Sciences, Vol. 3 No. 1, 2012, pp. 129-134. doi: 10.4236/fns.2012.31019.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] F. Barbosa, M. Fillion, M. Lemire, C. J. S. Passos, J. L Rodrigues, A. Philibet, J.-R. Guimar?es and D. Mergler, “Elevated Blood Lead Levels in a Riverside Population in the Brazil Amazon,” Environmental Research, Vol. 109, No. 5, 2009, pp. 594-599. doi:10.1016/j.envres.2009.03.005
[2] D. Grotto, J. Valentini, C. J. S. Passos, M. Fillion, S. C. Garcia, D. Mergler and F. Barbosa, “Mercury Exposure and Oxidative Stress in Communities of the Brazilian Amazon,” Science of the Total Environment, Vol. 408, No. 4, 2010, pp. 806-811. doi:10.1016/j.scitotenv.2009.10.053
[3] IBGE, Instituto Brasileiro de Geografia e Estatística, “Aquisi??o Alimentar Domiciliar per Capita Anual, por Grandes Regi?es, Segundo os Produtos, Período 2002-2003,” Bra- silia, 2003.
[4] CAC, Codex Alimentarius Commission, “General Guidelines on Sampling CAC-GL-50,” 2004, pp. 1-69.
[5] E. P. Nardi, F. S. B. Evangelista, L. Tormen, T. D. Saint’ Pierre, A. J. Curtius, S. S. Souza and F. Barbosa, “The Use of Inductively Coupled Plasma Mass Spectrometry (ICP-MS) for the Determination of Toxic and Essential Elements in Different Types of Food Samples,” Food Chemistry, Vol. 112, No. 3, 2009, pp. 727-732. doi:10.1016/j.foodchem.2008.06.010
[6] FAO/WHO, “Summary and Conclusions of the Sixty-Seventh Meeting of the Joint FAO/WHO Expert Committee on Food Additives (JECFA), 20-29 June 2006,” JECFA, Rome, 2006, 67/SC.
[7] Institute of Medicine, “Dietary Reference Intakes for Vitamin A, Vitamin K, Arsenic, Boron, Chromium, Copper, Iodine, Manganese, Molybdenum, Nickel, Silicon, Vanadium and Zinc,” National Academy Press, Washington DC, 2002, p. 773.
[8] R. de P. Martins, H. de C. Braga, A. P. da Silva, J. B. Dalmarco, A. F. de Bem, A. R. dos Santos, A. L. Dafre, M. G. Pizzolatti, A. Latini, M. Aschner and M. Farina, “Synergistic Neurotoxicity Induced by Methylmercury and Quercetin in Mice,” Food and Chemical Toxicology, Vol. 47, No. 3, 2009, pp. 645-649. doi:10.1016/j.fct.2008.12.020
[9] K. J. Virtanen, T. H. Rissanen, S. Voutilainen and T. P. Tuomainen, “Mercury as a Risk Factor for Cardiovascular Diseases,” Journal of Nutritional Biochemistry, Vol. 18, No. 2, 2007, pp. 75-85. doi:10.1016/j.jnutbio.2006.05.001
[10] D. Grotto, G. R. Barcelos, J. Valentini, L. M. Antunes, J. P. Angeli, S. C. Garcia and F. Barbosa, “Low Levels of Methylmercury Induce DNA Damage in Rats: Protective Effects of Selenium,” Archives of Toxicology, Vol. 83, No. 3, 2009, pp. 249-254. doi:10.1007/s00204-008-0353-3
[11] Z.-W. Zhang, C.-S. Moon, T. Watanabe, S. Shimbo and M. Ikeda, “Contents of Pollutant and Nutrient Elements in Rice and Wheat Grown on the Neighboring Fields,” Biological Trace Element Research, Vol. 57, No. 1, 1997, pp. 39-50. doi:10.1007/BF02803868
[12] J. Fu, Q. Zhou, J. Liu, W. Liu, T. Wang, Q. Zhang and G. Jiang, “High Levels of Heavy Metals in Rice (Oryza sativa L.) from a Typical E-Waste Recycling Area in Southeast China and Its Potential Risk to Human Health,” Che- mosphere, Vol. 71, No. 7, 2008, pp. 1269-1275. doi:10.1016/j.chemosphere.2007.11.065
[13] M. T. Mansouri and O. Cauli, “Motor Alterations Induced by Chronic Lead Exposure,” Environmental Toxicology and Pharmacology, Vol. 27, No. 3, 2009, pp. 307-313. doi:10.1016/j.etap.2009.01.003
[14] L. Jorhem, C. Astrand, B. Sundstr?m, M. Baxter, P. Stokes, J. Lewis and K. P. Grawé, “Elements in Rice from the Swedish Market: 1. Cadmium, Lead and Arsenic (Total and Inorganic),” Food Additives and Contaminants, Vol. 25, No. 3, 2008, pp. 284-292. doi:10.1080/02652030701474219
[15] M. C. Jung, S.-T. Yun, J.-S. Lee and J.-U. Lee, “Baseline Study on Essential and Trace Elements in Polished Rice from South Korea,” Environmental Geochemistry and Heal- th, Vol. 27, No. 5-6, 2005, pp. 455-464. doi:10.1007/s10653-005-4221-2
[16] E. Falahi, R. Hedaiati, A. R. Guiasvand, “Survey of Iron, Zinc, Calcium, Copper, Lead, and Cadmium in Rice Samples Grown in Iran,” Food Additives and Contaminants Part B-Surveillance, Vol. 3, No. 2, 2010, pp. 80-83. doi:10.1080/19440041003671288
[17] N. Rogan, T. Serafimovski, M. Dolenec, G. Tasev and T. Dolenec, “Heavy Metal Contamination of Paddy Soils and Rice (Oryza sativa L.) from Koani Field (Macedonia),” Environmental Geochemistry and Health, Vol. 31, No. 4, 2009, pp. 439-451. doi:10.1007/s10653-008-9197-2
[18] R. J. B. Heinemann, P. L. Fagundes, E. A. Pinto, M. V. C. Penteado and U. M. Lanfer-Marquez, “Comparative Study of Nutrient Composition of Commercial Brown, Parboiled and Milled Rice from Brazil,” Journal of Food Composition and Analysis, Vol. 18, No. 4, 2005, pp. 287-296. doi:10.1016/j.jfca.2004.07.005
[19] V. F. Fairbanks, “Modern Nutrition in Health and Disease,” M. E. Shills, J. A. Olson, M. Shike and A. C. Ross, Eds., 9th Edition, Lippincott Williams and Wilkins, Ha- gerstown, 1999.
[20] J. T. Dunn, E. A. Pretell and C. H. Daza, “Towards the Eradication of Endemic Goiter, Cretinism, and Iodine Deficiency,” Pan American Health Organization, Washington DC, 1986.
[21] K. V. Rajagopalan, “Molybdenum—An Essential Trace-Element in Human-Nutrition,” Annual Review of Nutrition, Vol. 8, 1988, pp. 401-427. doi:10.1146/
[22] T. D. Phuong, P. V. Chuong, D. T. Khiem and S. Kokot, “Elemental Content of Vietnamese Rice Part 1, Sampling, Analysis and Comparison with Previous Studies,” Analyst, Vol. 124, No. 4, 1999, pp. 553-560. doi:10.1039/a808796b
[23] K. M. Marr, G. D. Batten and A. B. Blakeney, “Relationship between Minerals in Australian Brown Rice,” Journal of Science Food Agricultural, Vol. 68, No. 3, 1995, 285-291. doi:10.1002/jsfa.2740680305
[24] N. K. Mohamed and N. M. Spyrou, “Trace Elemental Analysis of Rice Grown in Two Regions of Tanzania,” Journal of Radioanalytical Nuclear Chemistry, Vol. 281, No. 1, 2009, pp. 79-82. doi:10.1007/s10967-009-0078-7
[25] K. A. Wolnik, F. L. Fricke, S. G. Capar, M. W. Meyer, R. D. Satzger, E. Bonnin and C. M. Gaston, “Elements in Major Raw Agricultural Crops in the United-States.3. Cadmium, Lead, and 11 Other Elements in Carrots, Field Corn, Onions, Rice, Spinach, and Tomatoes,” Journal of Agricultural and Food Chemistry, Vol. 33, No. 5, 1985, pp. 807-811. doi:10.1021/jf00065a010

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.