Share This Article:

Synthesis and Characterization of CaPd3O4 Crystals

Abstract Full-Text HTML Download Download as PDF (Size:808KB) PP. 16-20
DOI: 10.4236/jcpt.2012.21003    3,870 Downloads   8,205 Views   Citations


A new method for the crystal growth of alkaline-earth palladate CaPd3O4 was developed. The crystals were synthesized on a voltage-applied electrode in a molten chloride solvent. The maximum length of the crystal was about 1.5 mm. The X-ray diffraction data were refined well by assuming a cubic structure of the space group Pm n, and the lattice constant a was 5.7471 (10) ?. The temperature dependence of the resistivity showed semiconductor-like characteristics with a very small activation energy Ea of 0.45 meV at low temperatures, and the resistivity at 300 K was 0.1 cm. The temperature dependence of the molar magnetic susceptibility showed the Curie-Weiss paramagnetic behavior with a small molar Curie constant Cmol of 5.0(1) × 10-3 emu K/(mol Oe), indicating the existence of localized spin moments.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

H. Samata, S. Tanaka, S. Mizusaki, Y. Nagata, T. Ozawa, A. Sato and K. Kosuda, "Synthesis and Characterization of CaPd3O4 Crystals," Journal of Crystallization Process and Technology, Vol. 2 No. 1, 2012, pp. 16-20. doi: 10.4236/jcpt.2012.21003.


[1] R. C. Wnuk, T. R. Touw and B. Post, “The Crystal Struc- ture of CaPd3O4,” IBM Journal of Research and Development, Vol. 8, No. 2, 1964, pp. 185-186. doi:10.1147/rd.82.0185
[2] K. Itoh and N. Tsuda, “Metal to Semiconductor Like Transition for Sintered Ca1-?xNaxPd3O4,” Solid State Com- munications, Vol. 109, No. 11, 1999, pp. 715-719. doi:10.1016/S0038-1098(98)00549-3
[3] I. Hase and Y. Ni-shihara, “CaPd3O4, as an Excitonic Insulator,” Physical Review B, Vol. 62, No. 20, 2000, pp. 13426-13429. doi:10.1103/PhysRevB.62.13426
[4] S. Ichikawa and I. Te-rasaki, “Metal-Insulator Transition in Ca1?-xLixPd3O4,” Physical Review B, Vol. 68, 2003, p. 233101. doi:10.1103/PhysRevB.68.233101
[5] K. Itoh, Y. Yano and N. Tsuda, “Metal to Insulator Transition for Ca1-?xNaxPd3O4,” Journal of the Physical Society of Japan, Vol. 68, No. 9, 1999, pp. 3022-3026. doi:10.1143/JPSJ.68.3022
[6] Y. Yano, M. Kanazawa, T. Fujii and N. Tsuda, “Magnetic Susceptibility of Ca1-?xNaxPd3O4,” Journal of the Physical Society of Japan, Vol. 70, No. 6, 2001, pp. 1772-1176. doi:10.1143/JPSJ.70.1772
[7] T. Taniguchi, Y. Nagata, T. C. Ozawa, M. Sato, Y. Noro, T. Uchida and H. Samata, “Insula-tor-Metal Transition In- duced in Sr1-?xNaxPd3O4 for Small Na-Substitutions,” Jour- nal of Alloys and Compounds, Vol. 373, No. 1-2, 2004, pp. 67-72. doi:10.1016/j.jallcom.2003.11.004
[8] T. C. Ozawa, A. Mat-sushita, Y. Hidaka, T. Taniguchi, S. Mizusaki, Y. Nagata, Y. Noro and H. Samata, “Synthesis and Characterization of Electron and Hole Doped Ternary Palladium Oxide: Sr1-xAxPd3O4 (A = Na, Bi),” Journal of Alloys and Compounds, Vol. 448, No. 1-2, 2008, pp. 77- 83. doi:10.1016/j.jallcom.2007.03.137
[9] J. Kitagawa, T. Sasakawa, T. Suemitsu, Y. Echizen and T. Ta-kabatake, “Effects of Valence Fluctuation and Pseudogap Formation on Phonon Thermal Conductivity of Ce-Based Compounds with ε-TiNiSi-Type Structure,” Phy- sical Review B, Vol. 66, No. 22, 2002, p. 224304. doi:10.1103/PhysRevB.66.224304
[10] A. Saramat, G. Svens-son, A. E. C. Palmqvist, C. Stiewe, E. Mueller, D. Platzek, S. G. K. Williams and D. M. Rowe, “Large Thermoelectric Figure of Merit at High Tem- perature in Czochralski-Grown Clathrate Ba8Ga16Ge30,” Journal of Applied Physics, Vol. 99, No. 2, 2006, p. 023708. doi:10.1063/1.2163979
[11] P. L. Smallwood, M. D. Smith and H.-C. zur Loye, “Flux Synthesis of Alkaline Earth Palladates,” Journal of Crystal Growth, Vol. 216, No. 1-4, 2000, pp. 299-303. doi:10.1016/S0022-0248(00)00432-2
[12] T. N. Nguyen and Hans-Conrad zur Loye, “Electrosynthesis in Hydroxide Melts,” Journal of Crystal Growth, Vo. 172, No. 1-2, 1997, pp. 183-189. doi:10.1016/S0022-0248(96)00726-9
[13] H. Samata, Y. Saeki, S. Mizusaki, Y. Nagata, T. C. Oza- wa and A. Sato, “Electro-chemical Crystal Growth of Pe- rovskite Ruthenates,” Journal of Crystal Growth, Vol. 311, No. 3, 2009, pp. 623-626. doi:10.1016/j.jcrysgro.2008.09.042
[14] G. M. Sheldrick, SHELXTL, Version 6.10, Bruker AXS Inc., Madison, 1997.
[15] F. Izumi and T. Ikeda, “A Rietveld-Analysis Pro-gramm RIETAN-98 and its Applications to Zeolites,” Materials Science Forum, Vol. 321-324, 2000, pp. 198-205. doi:10.4028/
[16] W. H. Press, B. P. Flannery, S. A. Teukolsky, W. T. Vetterling, “Nu-merical Recipes,” Cambridge University Press, Cambridge, 1986.
[17] S. J. Kim, S. Lemaux, G. Demazeau, J. Y. Kim and J. H. Choy, “LaPdO3: The First PdIII Oxide with the Perovskite Structure,” Journal of the American Chemical Society, Vol. 123, No. 42, 2001, pp. 10413-10414. doi:10.1021/ja016522b

comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.