Effect of Processing Paramters on Metal Matrix Composites: Stir Casting Process

.
DOI: 10.4236/jsemat.2012.21002   PDF   HTML     14,977 Downloads   39,839 Views   Citations

Abstract

Conventional stir casting process has been employed for producing discontinuous particle reinforced metal matrix composites for decades. The major problem of this process is to obtain sufficient wetting of particle by liquid metal and to get a homogenous dispersion of the ceramic particles. In the present study, aluminium metal matrix composites were fabricated by different processing temperatures with different holding time to understand the influence of process parameters on the distribution of particle in the matrix and the resultant mechanical properties. The distribution is examined by microstructure analysis, hardness distribution and density distribution.

Share and Cite:

G. Sozhamannan, S. Prabu and V. Venkatagalapathy, "Effect of Processing Paramters on Metal Matrix Composites: Stir Casting Process," Journal of Surface Engineered Materials and Advanced Technology, Vol. 2 No. 1, 2012, pp. 11-15. doi: 10.4236/jsemat.2012.21002.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] T. P. Rajan, R. M. Pillai and B. C. Pai, “Review Reinforcement Coatings and Interfaces in Aluminium Metal Matrix Compo-sites,” Journal Material Science, Vol. 33, No. 14, 1998, pp. 3491-3503. doi:10.1023/A:1004674822751
[2] M. Jayamathi, S. Seshan, S. V. Kailas, K. Kumar and T. S. Srivatsan, “Influence of Reinforcement on Microstructure and Mechanical Response of a Magnesium Alloy,” Current Science, Vol. 87, No. 9, 2004, pp. 1218-1231.
[3] V. K. Lindroos and M. J. Talvitie, “Recent Advances in Metal Matrix Composites,” Journal of Material Processing Technology, Vol. 53, 1995, pp. 273-284.
[4] L. M. Tham, M. Gupta and L. Cheng, “Effect of Limited Ma-trix-Reinforcement Interfacial Reaction on Enhancing the Me-chanical Properties of Aluminium-Silicon Carbide Composites,” Acta Materialia, Vol. 49, No. 16, 2001, pp. 3243-3253. doi:10.1016/S1359-6454(01)00221-X
[5] J. Hashim, L. Loo-ney and M. S. J. Hashmi, “Metal Matrix Composites: Production by the Stir Casting Method,” Journal of Materials Processing Technology, Vol. 119, No. 1-3, 1999, pp. 329-335. doi:10.1016/S0924-0136(01)00919-0
[6] W. Zhou and Z. M. Xu, “Casting of SiC Reinforced Metal Matrix Composites,” Journal of Materials Processing Technology, Vol. 63, No. 1-3, 1997, pp. 358-363. doi:10.1016/S0924-0136(96)02647-7
[7] R. J. Smeulders and F. H. Mischgofsky, “Direct Microscopy of Alloy Nucleation, Solidification and Ageing (Coarsening) during Stir Casting,” Journal of Crystal Growth, Vol. 76, No. 1, 1986, pp. 151-169. doi:10.1016/0022-0248(86)90021-7
[8] D. J. Lloyd, “The Solidification Microstructure of Particulate Reinforced Alumi-nium/SiC Composites,” Composite Science and Technology, Vol. 35, No. 2, 1989, pp. 159-179.
[9] P. K. Rohatgi, S. Ray, R. A. Sthena and C. S. Narendranath, “Interface in Cast Metal Matrix Composites,” Materials Science and Engineering, Vol. 162, No. 1-2, 1993, pp. 163-174. doi:10.1016/0921-5093(90)90041-Z
[10] F. Miani and P. Matteazzi, “Estimation of Viscosity in under Cooled Liquid Metal Alloys,” Journal of Non- crystalline Solids, Vol. 143, 1992, pp. 140-146. doi:10.1016/S0022-3093(05)80561-7
[11] J. Wang, Q. X. Guo, M. Nishio, H. Ohawa, D. Shu and K. Li, “The Apparent Vis-cosity of Fine Particle Reinforced Composite Melt,” Journal of Materials Processing Technology, Vol. 136, No. 1, 2003, pp. 60-63. doi:10.1016/S0924-0136(02)00919-6

  
comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.