Study of Dielectric and Piezoelectric Properties in the Ternary System Pb0.98Ca0.02[{(Zr0.52Ti0.48)0.98(Cr3+0.5 , Ta5+0.5)0.02}1–zPz]O3 Doping Effects
Hamzioui Louanes, Kahoul Fares, Abdessalem Nora, Boutarfaia Ahmed
DOI: 10.4236/msa.2012.31007   PDF   HTML   XML   3,950 Downloads   6,899 Views   Citations


The effects of P2O5 oxide on microstructure, dielectric and piezoelectric properties of Pb0.98Ca0.02[{(Zr0.52Ti0.48)0.98( Cr3+1/2,Ta5+1/2)0.02}1–zPz]O3 ternary ceramics were investigated. Specimens with various contents of P2O5 from 0 to 12 wt. % were prepared by a conventional oxide mixing technique. The effect of P2O5 doping with regard to the development of the crystalline phase, density, microstructure, dielectric, ferroelectric and piezoelectric characteristics has been investigated. It has been found that the sintering temperature of piezoelectric Pb0.98Ca0.02[{(Zr0.52Ti0.48)0.98(Cr3+1/2,Ta5+1/2)0.02}1–zPz]O3 can be reduced by phosphorus addition without compromising the dielectric properties. A sintered density of 94 % of the theoretical density was obtained for 4 wt. % P2O5 addition after sintering at 1050°C for 4 h. Ceramics sintered at 1050°C with 4 wt. % P2O5 achieve excellent properties, which are as follows: kp = 0.73, ρ = 0.09 × 10+4 (Ω. cm), εr = 18800, tanδ = 0.0094 and Tc = 390°C.

Share and Cite:

H. Louanes, K. Fares, A. Nora and B. Ahmed, "Study of Dielectric and Piezoelectric Properties in the Ternary System Pb0.98Ca0.02[{(Zr0.52Ti0.48)0.98(Cr3+0.5 , Ta5+0.5)0.02}1–zPz]O3 Doping Effects," Materials Sciences and Applications, Vol. 3 No. 1, 2012, pp. 41-49. doi: 10.4236/msa.2012.31007.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] G. H. Haertling, “Ferroelectric Ceramics: History and Technology,” Journal American Ceramic Society, Vol. 82, No. 4, 1999, pp. 797-818. doi:10.1111/j.1151-2916.1999.tb01840.x
[2] K. Uchino, “Ferroelectric Device,” Marcel Dekker, New York, 2000.
[3] S. Y. Cheng, S. L. Fu, C. C. Wei and G. M. Ke, “The Properties Low-Temperature Fixed Piezoelectric Ceramics,” Journal of Materials Science, Vol. 21, No. 2, 1986, pp. 571-576. doi:10.1007/BF01145525
[4] H. G. Lee, J. H. Choi and E. S. Kim, ” Low-Temperature Sintering and Electrical Properties of (1?x)Pb(Zr0.5Ti0.5) O3-xPb(Cu0.33Nb0.67)O3 Ceramics,” Journal of Electroceramics, Vol. 17, No. 2-4, 2006, pp. 1035-1040. doi:10.1007/s10832-006-0384-1
[5] R. Mazumder, A. Sen and H. S. Maiti, “Impedance and Piezoelectric Constants of Phosphorous-Incorporated Pb (Zr0.52Ti0.48)O3 Ceramics,” Materials Letters, Vol. 58, No. 25, 2004, pp. 3201-3205. doi:10.1016/j.matlet.2004.06.011
[6] G. Robert, M. D. Maeder, D. Damjanovic and N. Setter, “Synthesis of Lead Nickel-Niobate Zirconate Titanate Solid Solutions by a B-Site Precursor,” Journal American Ceramic Society,” Vol. 84, No. 12, 2001, pp. 2863-2868. doi:10.1111/j.1151-2916.2001.tb01107.x
[7] L. Pdungsap, S. Boonyeun, P. Winotai, N. Udomkan and P. Limsuwan, “Effects of Gd3+ Doping on Structural and Dielectric Properties of PZT (Zr:Ti = 52:48) Piezoceramics,” The European Physical Journal B, Vol. 48, No. 3, 2005, pp. 367-372. doi:10.1140/epjb/e2005-00407-9
[8] S. J. Yoon, A. Joshi and K. Uchino, “Effect of Additives on the Electromechanical Properties of Pb(Zr,Ti)O3-Pb-(Y2/3W1/3<、su>)O3 Ceramics,” Journal of the American Cera- mic Society, Vol. 80, No. 4, 2005, pp. 1035-1039. doi:10.1111/j.1151-2916.1997.tb02942.x
[9] G. A. Smolenskii and A. I. Agranovskaya, “Dielectric Po- larization of a Number of Complex Compounds,” Soviet Physics Solid State, Vol. 1, No. 10, 1960, pp. 1429-1437.
[10] F. Kulcsar, “Electromechanical Properties of Lead Titanate Zirconate Ceramics Modified with Tungsten and Thorium,” Journal American Ceramic Society, Vol. 48, No. 1, 1965, pp. 48-54. doi:10.1111/j.1151-2916.1965.tb11796.x
[11] N. Abdessalem and A. Boutarfaia, “Effect of Composition on the Electromechanical Properties of Pb[ZrxTi(0.9-x)- (Cr1/5, Zn1/5, Sb3/5)0.1]O3 Ceramics,” Ceramics International, Vol. 33, No. 2, 2007, pp. 293-296. doi:10.1016/j.ceramint.2005.08.008
[12] J. S. Kim and K. H. Yoon, “Physical and Electrical Properties of MnO2-Doped Pb(ZrxTi1?x)O3 Ceramics,” Journal of Materials Science, Vol. 29, No. 3, 1994, pp. 809-815. doi:10.1007/BF00445997
[13] P. Duran, J. F. Fernandez and C. Moure, “Effect of MnO Additions on the Sintering and Piezoelectric Properties of Samarium-Modified Lead Titanate Ceramics,” Journal of Materials Science Letters, Vol. 10, No. 15, 1991, pp. 917-919. doi:10.1007/BF00724781
[14] Z. He, J. Ma, R. Z. Hang, “Investigation on the Microstructure and Ferroelectric Properties of Porous PZT Ceramics,” Ceramics International, Vol. 30, No. 7, 2004, pp. 1353-1356. doi:10.1016/j.ceramint.2003.12.108
[15] R. Sumang and T. Bongkarn, “The Effect of Excess PbO on Crystal Structure, Microstructure, Phase Transition and Dielectric Properties of (Pb0.75 Sr0.25)TiO3 Ceramics,” Taylor & Francis Group LLC, Vol. 403, No. 1, 2010 , pp. 82-90. doi:10.1080/00150191003748949
[16] P. Goel, S. Sharma, K. L. Yadav and A. R. James, “Structural and Dielectric Properties of Phosphorous-Doped PLZT Ceramics,” Pramanas, Vol. 65, No. 6, 2005, pp. 1127-1132. doi:10.1007/BF02705288
[17] A. K. Saha, D. Kumar, O. Parkash, A. Sen and H. S. Maiti, “Effect of Phosphorus Addition on the Sintering and Dielectric Properties of Pb(Zr0.52Ti0.48)O3,” Materials Research Bulletin, Vol. 38, No. 7, 2003, pp. 1165-1174. doi:10.1016/S0025-5408(03)00112-0
[18] O. Ohtaka, R. Von Der Mühll and J. Ravez, “Low-Temperature Sintering of Pb(Zr,Ti)O3 Ceramics with the Aid of Oxyfluoride Additive: X-Ray Diffraction and Dielectric Studies,” Journal American Ceramic Society, Vol. 78, No. 3, 1995, pp. 805-808. doi:10.1111/j.1151-2916.1995.tb08251.x
[19] W. Heywang, “Ferroelektrizit?t in Perowskitischen Systemen und Ihre Technischen Anwendungen,” Zeitschrif Angewandte Physik, Vol. 19, 1965, pp. 473-481.
[20] S. Babu, D. Singh and A. Govindan, “Electrical Properties of Calcium Modified PZT System,” International Journal of Computer Science et Technologie, Vol. 2, No. 1, 2011, pp. 128-131.
[21] IEEE Standard on Piezoelectricity, IEEE Standard 176-1978, Institute of Electrical and Electronic Engineers, New York, 1978.

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.