In Situ Synthesis of Titanium Matrix Composite (Ti-TiB-TiC) through Sintering of TiH2-B4C
Abdul Jimoh, Iakovos Sigalas, Mathias Hermann
DOI: 10.4236/msa.2012.31005   PDF   HTML     5,228 Downloads   9,274 Views   Citations


Fully densified in-situ reinforced (TiB + TiC)-Ti matrix composites have been produced from TiH2-B4C mixtures using pressure less sintering or hot pressing technique. With increasing content of reinforcing components the sintering is retarded. The materials with more than 20 - 30 vol. % were only completely densified by hot pressing technique. Hardness values of the Ti matrix composites produced are up to 5 times higher than that of the sintered pure Ti produced from TiH2. This is caused beside the higher hardness of the inclusions also by hardening the matrix due to solubility of B and C in the titanium.

Share and Cite:

A. Jimoh, I. Sigalas and M. Hermann, "In Situ Synthesis of Titanium Matrix Composite (Ti-TiB-TiC) through Sintering of TiH2-B4C," Materials Sciences and Applications, Vol. 3 No. 1, 2012, pp. 30-35. doi: 10.4236/msa.2012.31005.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] Z. F. Yang, W. J. Lu, D. Xu, J. N. Qin and D. Zhang, “In Situ Synthesis of Hybrid and Multiple-Dimensioned Titanium Matrix Composites,” Journal of Alloys and Compounds, Vol. 419, No. 1-2, 2006, pp. 76-80. doi:10.1016/j.jallcom.2005.09.055
[2] L. Cai, Y. Zhang, L. Shi, H. Yang and M. Xi, “Research on Development of in Situ Titanium Matrix Composites and in Situ Reaction Thermodynamics of the Reaction System,” Journal of University of Science and Technology Beijing, Vol. 13, No. 6, 2006. pp. 551.
[3] S. Ranganath, “A Review on Particulate-Reinforced Titanium Matrix Composites,” Journal of Materials Science, Vol. 32, No, 1, 1997, pp. 1-16.
[4] D. Vallauri, I. C. A. Adrián and A. Chrysanthou, “TiC- TiB2 Composite: A Review of Phase Relationships, Processing and Properties,” Journal of the European Ceramic Society, Vol. 28, No. 8, 2008, pp. 1697-1713. doi:10.1016/j.jeurceramsoc.2007.11.011
[5] T. Saito, “The Automotive Application of Discontinuously Reinforced TiB-Ti Composite,” Journal of the Minerals, Metals and Materials Society, Vol. 56. No. 5, 2004, pp.33-36. doi:10.1007/s11837-004-0125-3
[6] D. R. Ni, L. Geng, J. Zhang and Z. Z. Zheng, “Effect of B4C on Microstructure of in Situ Titanium Matrix Composites Prepared by Reactive Processing of Ti-B4C System,” Scripta Materialia, Vol. 55, No. 5, 2006, pp. 429- 432. doi:10.1016/j.scriptamat.2006.05.024
[7] X. N. Zhang, W. J. Lv, D. Zhang, R. Wu, Y. J. Bian and P. W. Fang, “In Situ Technique for Synthesizing (TiB + TiC)/Ti Composites,” Scripta Materialia, Vol. 41, No. 1, 1999, pp. 39-46.
[8] M. P. Dariel, N. Frage and L. Levin, “A Novel Approach for the Preparation of B4C-Based Cermets,” International Journal of Refractory Metals & Hard Materials, Vol. 18, No. 2-3, 2002, pp. 131-135
[9] V. V. B. Prasad, J. Subramanyam and B. V. R. Bhat, “Pre- paration of Ti-TiB-TiC & Ti-TiB Composites by in-Situ Reaction Hot Pressing,” Journal of Materials Science and Engineering A, Vol. 325, No. 1-2, 2002, pp. 126-130. doi:10.1016/S0921-5093(01)01412-5
[10] S. Ranganath, M. Vijayakumar and J. Subrahmanyam, “Combustion-Assisted Synthesis of Ti-TiB-TiC Composite via the Casting Route.” Materials Science and Engi- neering A, Vol. 149, No. 2, 1992, pp. 253-257. doi:10.1016/0921-5093(92)90386-F
[11] A. Jimoh, “In-Situ Particulate Reinforcement of Titanium Matrix Composites with Borides,” PhD Thesis, University of Witwatersrand, Johannesburg, South Africa, 2010.
[12] D. E. Alman and J. A. Hawk, “The Abrasive Wear of Sintered Titanium Matrix-Ceramic Particle Reinforced Com- posites,” Wear, Vol. 225-229, Part 1, 1999, pp. 629-639. doi:10.1016/S0043-1648(99)00065-4
[13] B. V. R. Bhat, J. Subrahmanyam and V. V. B. Prasad, “Preparation of Ti-TiB-TiC & Ti-TiB Composites by in-Situ Reaction Hot Pressing,” Material Science and Engineering A, Vol. 325, No. 1-2, 2002, pp. 126-130.
[14] Y.-J. Kim, H. Chung and S. J. L. Kang, “In Situ Formation of Titanium Carbide in Titanium Powder Compacts by Gas-Solid Reaction,” Composites Part A: Applied Science and Manufacturing, Vol. 32, No. 5, 2001, pp. 731- 738.
[15] C. J. Lu and Z. Q. Li, “Structural Evolution of TiH2-B4C during Ball Milling and Subsequent Heat Treatment,” Journal of Alloys and Compounds, Vol. 448, No. 1-2, 2008, pp. 198-201. doi:10.1016/j.jallcom.2006.10.050
[16] Y. H. Liang, H. Y. Wang, Y. F. Yang, Y. L. Du and Q. C. Jiang, “Reaction Path of the Synthesis of TiC-TiB2 in Cu-Ti-B4C System,” International Journal of Refractory Metals and Hard Materials, Vol. 26, No. 4, 2008, pp. 383-388.
[17] M. Zadra, F. Casari, L. Girardini and A. Molinari, “Microstructure and Mechanical Properties of CP-Titanium Produced by Spark Plasma Sintering,” Powder Metallurgy, Vol. 51, No. 1, 2008. pp. 59-65. doi:10.1179/174329008X277000
[18] S. Dubey and W. O. Soboyejo, “Deformation and Fracture Properties of Damage Tolerant in-Situ Titanium Matrix Composites,” Applied Composite Materials, Vol. 4, No. 5, 1997, pp. 361-374. doi:10.1023/A:1008843504184

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.