Degradation of Phenolic Compounds in Creosote Treated Wood Waste by A Mixed Microbial Culture Augmented with Cellulolytic- Thermophilic Actinomaycets Thermobifida fusca
Abdel E Ghaly, Bopeng Zhang, Deepika Dave
.
DOI: 10.4236/jep.2012.31011   PDF    HTML     6,451 Downloads   11,419 Views   Citations

Abstract

Creosote is used for preservation of railway ties and timbers, electric utility poles, marine and foundation piling, fences and garden furniture. Creosote-treated wood waste may cause potential contamination of soil and water if they are not disposed properly. Creosote contains over 300 organic compounds including polycyclic aromatic hydrocarbons, phenolic compounds and heterocyclic organic compounds, many of which are toxic to human and can cause damage to kidney, liver, eyes and skin. The feasibility of using a composting technique inoculated with the cellulose degrading actinomycetesThermobifidafusca as a mesophilic/thermophilic bioremediation option to degrade phenolic compounds in creosote treated wood waste was evaluated. The temperature profile of bioremediation process clearly identified mesophilic and thermophilic phases in both experiments. Different degradation rates were observed in the mesophilic and thermophilic phases. Fluctuations of pH was observed in both experiment as the result of the breakdown of organic nitrogen to ammonium in the first week and the formation of organic acids and the loss of ammonium with the exhaust gases in the latter stage. The moisture content decreased in both trials because of the net loss of water with the exhaust gas. Both experiments achieved similar reductions in total carbon and TKN, volatile solids and phenolic compounds, cellulose and lignin indicating similar levels of microbial activities during the composting process. The stability and maturity of the final products were also similar. The inoculation of the cellulolytic-thermophilicactinomycetesThermobifidafusca did not manifest observable differences in degrading cellulose, lignin and phenolic compounds compared with the control.

Share and Cite:

A. Ghaly, B. Zhang and D. Dave, "Degradation of Phenolic Compounds in Creosote Treated Wood Waste by A Mixed Microbial Culture Augmented with Cellulolytic- Thermophilic Actinomaycets Thermobifida fusca," Journal of Environmental Protection, Vol. 3 No. 1, 2012, pp. 83-96. doi: 10.4236/jep.2012.31011.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] P. B. Bedient, A. C. Rodgers, T. C. Bouvette, M. B. Tomson and T. H. Wang, “Groundwater quality at a creosote waste site” Groundwater, Vol. 22, No.3, 1984, pp. 318-329. DOI: 10.1111/j.1745-6584.1984.tb01404.x/pdf
[2] CEPA, “Canadian Environmental Protection Act. Priority Substances List Assessment Report. Creosote-impregnated Waste Materials,” Government of Canada. Environment Canada. Health Canada, 1993.
[3] ATSDR, “Toxicological Profile for Wood Creosote, Coal Tar Creosote, Coal Tar, Coal Tar Pitch, and Coal Tar Pitch Volatiles. Agency for Toxic Substances and Disease Registry”, U.S. Department of Health and Human Services, 2002. http://www.atsdr.cdc.gov/toxprofiles/tp85.pdf.
[4] CICAD, “Concise International Chemical Assessment Document 62: Coal Tar Creosote. World Health Organization”, Geneva, 2004.
[5] Y. Ikarashi, M. Kaniwa and T. Tsuchiya, “Monitoring of polycyclic aromatic hydrocarbons and water-extractable phenols in creosotes and creosote-treated woods made and procurable in Japan”. Chemosphere, Vol. 60, pp. 1279-1287. DOI:10.1016/j.chemosphere.2005.01.054
[6] L. Becker, G. Matuschek, D. Lenoir and A. Kettrup, “Leaching behaviour of wood treated with creosote”, Chemosphere, Vol. 42, 2001, 301–308. PMID:11100930
[7] K. T. J. Bestari, R. D. Robinson, K. R. Solomon, T. S. Steele, K. E. Day and P. K. Sibley, “Distribution and composition of polycyclic aromatic hydrocarbons within experimental microcosms treated with creosote-impregnated Douglas fir pilings. Environmental Toxicology and Chemistry, 1998, Vol. 17, No. 12, pp. 2369-2377. DOI: 10.1002/etc.5620171202.
[8] C. L?ser, H. Ulbricht, P. Hoffmann and H. Seidel, “Composting of wood containing polycyclic aromatic hydrocarbons (PAHs)” Compost Science and Utilization, Vol. 7, No. 3, 1999, 16-32. ISSN: 1065657X
[9] H. Borazjani, S. Diehl and H. A. Stewart, “Composting of wood wastes: Plywood and sawmill residue”, 2000. http://fwrc.msstate.edu/pubs/composting.pdf.
[10] V. McMahon, A. Garg, D. Aldred, G. Hobbs, R. Smith and I.E. Tothill, “Composting and bioremediation process evaluation of wood waste materials generated from the construction and demolition industry” Chemosphere, Vol. 71, No.9, 2008, 1617-1628. DOI: 10.1016/j.wasman.2008.02.025
[11] R. T. Haug, “The Practical Handbook of Composting Engineering”. London, Lewis Publishers, 1993, pp.1, 10-170, 193, 206.
[12] CCME, “Canadian Council of Ministers of the Environment. Guidelines for Compost Quality”, March, 1996.
[13] S. Gajalakshmi and S. A. Abbasi, “Solid waste management by composting: State of the art”, Critical Reviews in Environmental Science and Technology, Vol. 38, No. 5, 2008, pp. 311-400. DOI: abs/10.1080/10643380701413633
[14] D. G. Cooney and C. G. Golueke, “Thermophilic fungi: An account of their biology, activities and classification”, W.H. Freeman, San Francisco, 1964. http://onlinelibrary.wiley.com/doi/10.1002/jobm.19660060212/abstract
[15] A.S. Ball and A. J. McCarthy, “Production and properties of xylanases from actinomycetes”, Journal of Applied Bacteriology,Vol. 66, 1989, 439-444. DOI: 10.1111/j.1365-2672.1989.tb05113.x
[16] M. Tuncer, A. S. Ball, A. Rob and M. T. Wilson, “Optimization of extracellular lignocellulolytic enzyme production by a thermophilicactinomyceteThermomonosporafusca BD25”, Enzyme and Microbial Technology, 1999, Vol. 25, pp. 38-47. DOI:10.1016/S0141-0229(99)00012-5
[17] D. L. Crawford and E. McCoy, “Cellulases of Thermomonosporafusca and Streptomyces thermodiastaticus”. Applied Microbiology, Vol. 24, No. 1, 1972, pp. 150-152. PMCID: PMC380564.
[18] C. Kleeberg, R. Hetz, M. Kropperstedt, R. Muller and W. Deckwer. “Biodegradation of aliphatic-aromatic copolyesters by Thermomonosporafusca and other thermophilic compost isolates”. Applied and Environmental Microbiology, 1998, Vol. 64, No. 5, 1731-1735.
[19] U. Witt, T. Einig, M. Ymamoto, I. Leeberg, W. D. Deckwer and R. J. Muller, “Biodegradation of aliphatic-aromatic coployesters: Evaluation of the final biodegradability and ecotoxicological impact of degradation intermediates”, Chemosphere, Vol.44, 2001, pp. 289-299. PMID:11444312
[20] Kleeberg, K. Welzel, J. VandenHeuvel, R. J. Muller, W. D. Deckwer, “Characterization of a new extracellular hydrolase from Thermobifidafuscadegrading aliphatic-aromatic copolyesaters”, Biomacromolecules, Vol. 6, 2005, pp. 262-270. PMID:15638529
[21] G. M. Balestra, and I. J. Misaghi, Increasing the efficiency of the plate counting method for estimating bacterial diversity. Journal of Microbiological Methods, Vol. 30, 1997, pp. 111-117. DOI:10.1016/S0167-7012(97)00056-0.
[22] F. Alkoaik, “Fate of plant pathogens and pesticides during composting of greenhouse tomato plant residues”, Ph.D dissertation, Dalhousie University, 2005.
[23] ASTM, “American Standard Test Method, Annual Book of Standards. D 4442-07. Direct Moisture Content Measurement of Wood and Wood-Base Materials” Philadelphia, PA, 2007.
[24] U.S. EPA, “Method 1684: Total, fixed, and volatile solids in water, solids, and biosolids. EPA-821-R-01-015”, Office of Water, Office of Science and Technology, Engineering and Analysis Division, U.S. Environmental Protection Agency, Washington, DC, 2005.
[25] U. S. EPA, “Determination of Total Kjeldahl Nitrogen by semi-automated colorimetry. EPA Method 351.2 (Revision 2). Environmental monitoring systems laboratory office of research and development”, U.S. Environmental Protection Agency, Cincinnati, Ohio, 1993.
[26] M. H. Chantigny, D. A. Angers, K. Kaiser and K. Kalbitz, “Extraction and characterization of dissolved organic matter” In: M. R. Carter and E. G. Gregorich, Eds, Soil Sampling and Methods of Analysis (Second Edition), Canadian Society of Soil Science, pp. 617-635. DOI: 10.1201/9781420005271.ch48
[27] ASTM, “American Standard Test Method, Annual Book of Standards. D 1783-01 (Reapproved 2007). Standard Test Methods for Phenolic Compounds in Water” Philadelphia, PA, 2007.
[28] X. Jiang, G. Zeng, D. Huang, Y. Chen, F. Liu, G. Huang, J. Li, B. Xi and H. Liu, “Remediation of pentachlorophenol-contaminated soil by composting with immobilized Phanerochaetechrysosporium” World Journal of Microbiology and Biotechnology, Vol. 22, No. 9, 2006, pp. 909-913. DOI: 10.1007/s11274-006-9134-4
[29] M. Benito, A. Masaguer, A. Moliner, N. Arrigo, R. M. Palma, “Chemical and microbiological parameters for the characterization of the stability and maturity of pruning waste compost”, Biology and Fertility of Soils, Vol. 37, 2003, 184-189. DOI:10.1006/jaer.2000.0662
[30] AOAC International, “Official Methods of Analysis” 18th Ed., Method 973.18, Association of Analytical Communities, Gaithersburg, MD, 2005.
[31] H. Yu, G. Zeng, H. Huang, X. Xi, R. Wang, D. Huang, G. Huang and J. Li, “Microbial community succession and lignocelluloses degradation during agricultural waste composting” Biodegradation, Vol. 18, 2007, pp. 793-802. DOI: 10.1007/s10532-007-9108-8.
[32] V. McMahon, A. Garg, D. Aldred, G. Hobbs, R. Smith and I. E. Tothill, “Evaluation of the potential of applying composting/bioremediation techniques to wastes generated within the construction industry” Waste Management, Vol. 29, 2009, pp. 186-196. DOI: 10.1016/j.wasman.2008.02.025.
[33] A.E. Ghaly, F. Alkoaik, A. Snow and R. Singh. Effective thermophilic composting of crop residues for inactivation of tobacco mosaic virus, American Journal of Biochemistry and Biotechnology, Vol. 2, No. 3, 2006, pp. 111-118. DOI: 10.3844/ajbbsp.2006.111.118.
[34] J. S. VanderGheynst, L. P. Walker and J. Y. Parlange, Energy transport in a high-solids aerobic degradation process: Mathematical modeling and analysis. Biotechnology Progress, Vol. 13, 1997, pp. 238-248. ISSN: 8756-7938
[35] C. G. Golueke, “Biological reclamation of solid waste” Rodale Press, Emmaus, PA, 1977, ISBN-13: 978-0878571581
[36] S. M. Tiquia, N. F.Y. Tam and I. J. Hodgkiss, “Microbial activities during composting of spent pig-manure sawdust litter at different moisture contents”, Bioresource Technology, Vol. 55, No. 3, 1996, pp. 201-206. DOI: 10.1016/0960-8524(95)00195-6
[37] E. Epstein, “The Science of Composting” Lancaster: Technomic Publishing AG, 1997. ISBN: 1566764785
[38] R. T. Haug, “The Practical Handbook of Composting Engineering” London, Lewis Publishers, 1993, pp.1, 10-170, 193, 206.
[39] K-S Suehara, Y. Y. Nakano and T. Yano, “Rapid measurement and control of the moisture content of compost using near-infrared spectroscopy”, Journal of Bioscience and Bioengineering. Vol. 87, No. 6, pp. 769-714. DOI: 10.1016/S1389-1723(99)80151-0
[40] C. Liang, K. C. Das, R. W. McClendon, “The influence of temperature and moisture contents regimes on the aerobic microbial activity of a biosolids composting blend” Bioresource Technology, Vol. 86, 2003, pp. 131–137. DOI: 10.1016/S0960-8524(02)00153-0
[41] L. Lu, A., M. Kumar, J. C. Tsai and J. G. Lin, “High-rate composting of barley dregs with sewage sludge in a pilot scale bioreactor”, Bioresource Technology, Vol. 99, 2008, pp. 2210-2217. DOI: 10.1016/j.biortech.2007.05.030.
[42] C. Sundberg, S. Sm?rs and H. J?nsson, “Low pH as an inhibiting factor in the transition from mesophilic to thermophilic phase in composting” Bioresource Technology, Vol. 95, 2004, pp. 145-150. DOI:10.1016/j.biortech.2004.01.016.
[43] B. Beck-Friis, S. Smars, H. J€onsson, H. Kirchmann, “Emissions of carbon dioxide, ammonia and nitrous oxide from organic household waste in a compost reactor under different temperature regimes” Journal of Agricultural composting”, In: Compost: production, quality and use. deBertoldi, M., Ferranti, M. P., Hermite, P.L. and Zucconi, F, Elsevier , Eds., Applied Science, London, England, 1987, ISBN-10: 1851660992
[44] G. R. Lemus and A. K. Lau, “Biodegradation of lipidic compounds in synthetic food wastes during composting” Canadian Biosystems Engineering, Vol. 44, 2002 6.33-6.39.
[45] Z. Khan and Y. Anjaneyulu, Bioremediation of contaminated soil and sediment by composting”, Remediation Journal, Vol. 16, No. 4, pp. 109-122. DOI: 10.1002/rem.20105
[46] G. R. Lemus, A. K. Lau, R. M. R. Branion and K. V. Lo. “Bench-scale study of the biodegradation of grease traps sludge with yard trimmings or synthetic food waste via composting” Journal of Environmental Engineering and Science, 3, 2004, 485–Engineering Research, Vol. 78, No. 4, 2001, pp. 423–430. DOI:10.1006/jaer.2000.0662
[47] M. Viel, D. Sayag and L. Andre, “Optimization of agricultural industrial wastes management through in-vessel 494. DOI: 10.1139/S04-020
[48] J. Ramaswamy, S. O. Prasher, R. M. Patel, S. A. Hussain and S. F. Barrington. “The effect of composting on the degradation of a veterinary pharmaceutical”, Bioresource Technology, Vol. 101, 2010, pp. 2294–2299. DOI: 10.1016/j.biortech.2009.10.089.
[49] Kumar, S. Gaind and L. Nain, “Evaluation of thermophilic fungal consortium for paddy straw composting”, Biodegradation, Vol. 19, No. 3, 2008, pp. 395-402. DOI: 10.1007/s10532-007-9145-3
[50] S. M. Tiquia, T. L. Richard and M. S. Honeyman, “Carbon, nutrient, and mass loss during composting”, Nutrient Cycling in Agroecosystems, Vol. 62, No. 1, 2002, pp. 15-24. DOI: 10.1023/A:1015137922816.
[51] Y-X. Chen, X-D. Huang, Z-Y. Han, X. Huang, B. Hub, D-Z. Shi and W-X. Wu, “Effects of bamboo charcoal and bamboo vinegar on nitrogen conservation and heavy metals immobility during pig manure composting” Chemosphere, Vol. 78, 2010, pp. 1177–1181. DOI:10.1016/j.chemosphere.2009.12.029.
[52] J. Y. Wang, O. Stabnikova, S. T. L. Tay, V. Ivanov and J. H. Tay, “Intensive composting of sewage sludge and food waste by Bacillus thermoamylovorans”World Journal of Microbiology and Biotechnology, Vol. 19, No.4, pp. 427-432. DOI: 10.1023/A:1023933212654\
[53] P. L. Bishop and C. Godfrey, “Nitrogen variations during sludge composting” BioCycle, Vol. 24, 1983, pp. 34-39.
[54] S. M. Tiquia and N. F. Y. Tam. “Fate of nitrogen during composting of chicken litter” Environmental Pollution, Vol. 110, 2000, pp. 535-541. DOI: 10.1016/S0269-7491(99)00319-X
[55] N. Morisaki, C. G. Phae, K. Nakasaki, M. Shoda and H. Kubota, Nitrogen transformation during thermophilic composting, Journal of Fermentation and Bioengineering, Vol. 67, No. 1, 1989, pp. 57-61. DOI: 10.1016/0922-338X(89)90087-1
[56] S. Sadaka and A. El-Taweel, “Effects of aeration and C:N ratio on household waste composting in Egypt” Compost Science and Utilization, Vol. 11, No. 1, pp. 36-40. ISSN: 1065-657X.
[57] Q. Li, B. Lv, H. Wang, “Influence of C/N Ratio on nitrogen changing during composting” Bioinformatics and Biomedical Engineering, Vol. 1, No. 4, 2010. DOI: 10.1109/ICBBE.2010.5518111
[58] G. P. Prpich, R. L. Adams and A. J. Daugulis, “Ex situ bioremediation of phenolic contaminated soil using polymer beads”, Biotechnology Letters, Vol. 28, 2006, pp. 2027-2031. DOI: 10.1007/s10529-006-9189-1.
[59] M. Petre, G. Zarnea, P. Adrian and E. Gheorghiu, “Biodegradation and bioconversion of cellulose wastes using bacterial and fungal cells immobilized in radiopolymerized hydrogels”, Resources, Conservation and Recycling, Vol. 27, No. 4, pp. 309-332. DOI: 10.1016/S0921-3449(99)00028-2.
[60] D.L. Crawford, “Cultural, morphological, and physiological characteristics of Thermomonosporafusca(strain 190Th)” Canadian Journal of Microbiology, Vol. 21, pp. 1842-1848. PMID: 1201520
[61] J. G. Shi, G. M. Zeng, X. Z. Yuan, F. Dai, J. Liu and X. H. Wu, The stimulatory effects of surfactants on composting of waste rich in cellulose, World Journal of Microbiology and Biotechnology, Vol. 22, 2006, pp. 1121-1127. DOI: 10.1007/s11274-006-9152-2
[62] D. A. Iannotti, M. E. Grebus, B. L. Toth, L. V. Madden and H. A. J. Hoitink. Oxygen respirometry to assess stability and maturity of composted municipal solid waste, Journal of Environmental Quality, Vol. 23, 1994, pp.1177-1183.
[63] L. Wu, L. Q. Ma and G. A. Martinez. Comparison of methods for evaluating stability and maturity of biosolids compost, Journal of Environmental Quality, Vol. 29, No. 2, 2000, pp. 424-429. DOI: 10.2134/jeq2000.00472425002900020008x.
[64] J. I. Boulter-Bitzer, T. Trevors and G. J. Boland, A polyphasic approach for assessing maturity and stability in compost intended for suppression of plant pathogens, Applied Soil Ecology, Vol. 34, 2006, pp. 65-81. DOI: 10.1016/j.apsoil.2005.12.007.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.