Cyclic Correlation of Diffuse Reflected Signal with Glucose Concentration and Scatterer Size

Abstract

The utility of optical coherence tomography signal amplitudemeasurement to monitorglucose concentration in tissue phantom and blood samples from human subjectshas been explored. The diffusion equation based calculations as well as invivo OCT signal measurements confirm a cyclic correlation of signal intensity with glucose concentration and scatterer size.

Share and Cite:

J. Solanki, P. Sen, J. Andrews and K. Thareja, "Cyclic Correlation of Diffuse Reflected Signal with Glucose Concentration and Scatterer Size," Journal of Modern Physics, Vol. 3 No. 1, 2012, pp. 64-68. doi: 10.4236/jmp.2012.31009.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] N. A. Bazaev and S. V. Selishchev, “Noninvasive Methods for Blood Glucose Measurement,” Biomedical Engineering, Vol. 41, No. 1, 2007, pp. 42-50. doi:10.1007/s10527-007-0010-9
[2] C. F. Amaral, M. Brischwein and B. Wolf, “Multiparameter Techniques for Noninvasive Measurement of Blood Glucose”, Sensors and Actuators B, Vol. 140, No. 1, 2009, pp. 12-16. doi:10.1016/j.snb.2009.04.023
[3] B. Rabinovitch, W. F. March and R. L. Adams, “Noninvasive Glucose Monitoring of the Aqueous Humor of the Eye. Part 1. Measurement of Very Small Optical Rotations,” Diabetes Care, Vol. 5, No. 3, 1982, pp. 254-258. doi:10.2337/diacare.5.3.254
[4] G. L. Cote, M. D. Fox and R. B. Northrop, “Noninvasive Optical Polarimetric Glucose Sensing Using a True Phase Measurement Technique,” IEEE Transactions on Biomedical Engineering, Vol. 39, No. 7, 1992, pp. 752-756. doi:10.1140/epjc/s10052-010-1303-9
[5] K. V. Larin, M. Motamedi, M. S. Eledrisi and R. O. Esenaliev, “Noninvasive Blood Glucose Monitoring with Optical Coherence Tomography,” Diabetes Care, Vol. 25, No. 12, 2002, pp. 2263-2267. doi:10.2337/diacare.25.12.2263
[6] R. Poddar, S. R. Sharma, J. T. Andrews and P. Sen, “Study of Correlation between Glucose Concentration and Reduced Scattering Coefficients in Turbid Media Using Optical Coherence Tomography,” Current Science, Vol. 95, No. 2, 2008, pp. 340-348.
[7] J. C. Pickup, F. Hussain, N. D. Evans, O. J. Rolinski and D. J. S. Birch, “Fluorescence-Based Glucose Sensors,” Biosensors and Bioelectronics, Vol. 20, No. 12, 2005, pp. 2555-2565. doi:10.1016/j.bios.2004.10.002
[8] J. R. McNichols and L. G. Cote, “Optical Glucose Sensing in Biological Fluids: An Overview,” Journal of Biomedical Optics, Vol. 5, No. 1, 2000, pp. 5-16. doi:10.1117/1.429962
[9] S. F. Malin, T. L. Ruchiti, T. B. Blank, S. U. Thennadil and S. L. Monfre, “Noninvasive Prediction of Glucose by Near-Infrared Diffuse Reflectance Spectroscopy,” Clinical Chemistry, Vol. 45, No. 9, 1999, pp. 1651-1658.
[10] V. Ashok, A. Nirmalkumar and N. Jeyashanthi, “A Novel Method for Blood Glucose Measurement by Noninvasive Technique Using Laser,” International Journal of Biological and Life Sciences, Vol. 7, No. 3, 2010, pp. 127- 132.
[11] V. V. Sapozhnikova, D. Prough, R. V. Kuranov, I. Cicenaite and R. O. Esenaliev, “Influence of Osmolytes on in Vivo Glucose Monitoring Using Optical Coherence Tomography,” Experimental Biology and Medicine, Vol. 231, No. 8, 2006, pp. 1323-1332.
[12] A. Ishimaru, “Wave Propagation and Scattering in Ran- dom Media,” Scattering and Absorption of a Wave by Single Particle, Chapter 2, Vol. 1, Academic Press, New York, 1978, pp. 09-40.
[13] D. N. Mederis and G. R. Minot, “Studies on Red Blood Cell Diameter,” Vol. 7, No. 4, 1929, pp. 631-636. doi:10.1172/JCI100247
[14] S. N. Thennadill, J. L. Rennert, B. J. Wenzel, K. H. Hazen, T. L. Ruchti and M. B. Block, “Comparison of Glucose Concentration in Interstitial Fluid, and Capillary and Venous Blood during Rapid Changes in Blood glucose Levels,” Diabetes Technology & Therapeutics, Vol. 3, No. 3, 2001, pp. 357-365. doi:10.1089/15209150152607132
[15] R. Srinivasan and M. Singh, “Laser Backscattering and Transillumination Imaging of Human Tissues and Their Equivalent Phantoms,” IEEE Transactions on Biomedical Engineering, Vol. 50, No. 6, 2003, pp. 724-730. doi:10.1109/TBME.2003.812188
[16] H. J. V. Staveren, C. J. M. Moes, J. V. Marle, S. A. Prahl and M. J. C. V. Gemert, “Light Scattering in Intralipid-10% in the Wavelength Range of 400 - 1100 nm,” Applied Optics, Vol. 30, No. 31, 1991, pp. 4507-4514. doi:10.1364/AO.30.004507
[17] B. F. Kennedy, S. Loitsch, R. A. McLaughlin, L. Scolaro, P. Rigby and D. D. Sampson, “Fibrin Phantom for Use in Optical Coherence Tomography,” Journal of Biomedical Optics, Vol. 15, No. 3, 2010, p. 030507-1-3. doi:10.1117/1.3427249.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.