Ultra Low Energy Results and Their Impact to Dark Matter and Low Energy Neutrino Physics


We present ultra low energy results taken with the novel Spherical Proportional Counter. The energy threshold has been pushed down to about 25 eV and single electrons are clearly collected and detected. To reach such a performance two low energy calibration systems have been successfully developed: a pulsed UV lamp extracting photoelectrons from the inner surface of the detector and various radioactive sources allowing low energy peaks through fluorescence processes. The bench mark result is the observation of a well resolved peak at 270 eV due to carbon fluorescence, which is a unique performance for such large massive detector. It opens up a new window in dark matter and low energy neutrino searches and it may allow the detection of neutrinos from a nuclear reactor or from supernova via neutrino-nucleus elastic scattering.

Share and Cite:

E. Bougamont, P. Colas, J. Derre, I. Giomataris, G. Gerbier, M. Gros, P. Magnier, X. Navick, P. Salin, I. Savvidis, G. Tsiledakis and J. Vergados, "Ultra Low Energy Results and Their Impact to Dark Matter and Low Energy Neutrino Physics," Journal of Modern Physics, Vol. 3 No. 1, 2012, pp. 57-63. doi: 10.4236/jmp.2012.31008.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] K. Nakamura et al., “Review of Particle Physics,” Journal of Physics G: Nuclear and Particle Physics, Vol. 37, No. 7A, 2010, pp. 1-1422. doi:10.1088/0954-3899/37/7A/075021
[2] I. Giomataris and J. D. Vergados, “Neutrino Properties studied with a Triton Source and a Large Spherical TPC,” Nuclear Instruments and Methods in Physics Research Section A, Vol. 530, No. 3, 2004, pp. 330-358. doi:10.1016/j.nima.2004.04.223
[3] J. I. Collar and Y. Giomataris, “Possible Low-Back- ground Applications of Micromegas Detector Technology, Nuclear Instruments and Methods in Physics Research Section A, Vol. 471, No. 1-2, 2001, pp. 254-259. doi:10.1016/S0168-9002(01)00986-X
[4] R. Bernabei et al., “New Results from DAMA/LIBRA,” The European Physical Journal C, Vol. 67, No. 1-2, 2010, pp. 39-49. doi:10.1140/epjc/s10052-010-1303-9
[5] A. Dedes, I. Giomataris, K. Suxho and J. D. Vergados, “Searching for Secluded Dark Matter via Direct Detection of Recoiling Nuclei as Well as Low Energy Electrons,” Nuclear Physics B, Vol. 826, No. 1-2, 2010, pp.148-173. doi:10.1016/j.nuclphysb.2009.09.032
[6] J. Monroe and P. Fisher, “Neutrino Backgrounds to Dark Matter Searches,” Physical Review D, Vol. 76, No. 3, 2007, Article No: 033007.
[7] D. Santos et al., “Ionization Quenching Factor Measurement of 4He,” 2008. arXiv: 0810.1137 [astro-ph].
[8] C. Grignon et al., “A Prototype of a Directional Detector for Non-Baryonic Dark Matter Search: MIMAC (Micro- TPC Matrix of Chambers),” JINST, Vol. 4, 2009, Article No. P11003.
[9] S. Ahlen et al., “The Case for a Directional Dark Matter Detector and the Status of Current Experimental Efforts,” International Journal of Modern Physics A, Vol. 25, No. 1, 2010, pp. 1-51. doi:10.1142/S0217751X10048172
[10] D. Z. Freedman et al., “The Weak Neutral Current and Its Effects in Stellar Collapse,” Annual Review of Nuclear and Particle Science, Vol. 27, 1977, pp. 167-207. doi:10.1146/annurev.ns.27.120177.001123
[11] A. Drukier and L. Stodolsky, “Principles and Applications of a Neutral-Current Detector for Neutrino Physics and Astronomy,” Physical Review D, Vol. 30, No. 11, 1984, pp. 2295-2309. doi:10.1103/PhysRevD.30.2295
[12] C. J. Horowitz, K. J. Coakley and D. N. McKinsey, “Supernova Observation via Neutrino-Nucleus Elastic Scattering in the CLEAN Detector,” Physical Review D, Vol. 68, No. 2, 2003, p. 023005. doi:10.1103/PhysRevD.68.023005
[13] Y. Giomataris and J. D. Vergados, “A Network of Neutral Current Spherical TPCs for Dedicated Supernova Detection,” Physics Letters B, Vol. 634, No. 1, 2006, pp. 23-29. doi:10.1016/j.physletb.2006.01.040
[14] J. D. Vergados, F. T. Avignone III and I. Giomataris, “Coherent Neutral Current Neutrino-Nucleus Scattering at a Spallation Source: A Valuable Experimental Probe,” Physical Review D, Vol. 79, No. 11, 2009, Article No: 113001. doi:10.1103/PhysRevD.79.113001
[15] K. Scholberg, “Prospects for Measuring Coherent Neutrino-Nucleus Elastic Scattering at a Stopped-Pion Neutrino Source,” Physical Review D, Vol. 73, No. 3, 2006, Article No: 033005. doi:10.1103/PhysRevD.73.033005
[16] B. R. Davis, P. Vogel, F. M. Mann and R. E. Schenter, “Reactor Antineutrino Spectra and Their Application to Antineutrino-Induced Reactions,” Physical Review C, Vol. 19, No. 6, 1979, pp. 2259-2266. doi:10.1103/PhysRevC.19.2259
[17] T. Araki et al., “Experimental Investigation of Geologically Produced Antineutrinos with KamLAND,” Nature, Vol. 436, No. 7050, 2005, pp. 499-503. doi:10.1038/nature03980
[18] S. Dye, “Testing Geological Models with Terrestrial Antineutrino Flux Measurements,” 2009. arXiv:0912.2775 [physics.geo-ph].
[19] P. Ila et al., “Considerations for a Dedicated Geoneutrino Detector for Geosciences,” 2009. arXiv:0902.3607 [physics.ins-det].
[20] K. A. Hochmuth et al., “Probing the Earth’s Interior with the LENA Detector,” Earth Moon Planets, No. 99, No. 1-4, 2006, pp. 253-264. doi:10.1007/s11038-006-9111-9
[21] H. T. Wong, “Ultra-Low-Energy Germanium Detector for Neutrino-Nucleus Coherent Scattering and Dark Matter Searches,” Modern Physics Letters A, Vol. 23, No. 17-20, 2008, pp. 1431-1442. doi:10.1142/S0217732308027801
[22] C. E. Aalseth et al., “Results from a Search for Light-Mass Dark Matter with a P-Type Point Contact Germanium Detector,” 2010. arXiv:1002.4703 [astro-ph.CO].
[23] S. Aune et al., “NOSTOS: A Spherical TPC to Detect Low Energy Neutrinos,” AIP Conference Proceedings, Vol. 785, 2005, pp. 110-118. doi:10.1063/1.2060461
[24] I. Giomataris et al., “NOSTOS Experiment and New Trends in Rare Event Detection,” Nuclear Physics B— Proceedings Supplements, Vol. 150, 2006, pp. 208-213. doi:10.1016/j.nuclphysbps.2005.01.245
[25] I. Giomataris et al., “A Novel Large-Volume Spherical Detector with Proportional Amplification Read-Out,” JINST, Vol. 3, 2008, Article No: P090007.
[26] I. Giomataris et al., “Spherical TPC Development and Trends,” Journal of Physics: Conference Series, Vol. 179, 2009, Article No: 012003.

Copyright © 2022 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.