Chemometric Analysis of an Sanitary Landfill Leachate

DOI: 10.4236/jwarp.2012.41003   PDF   HTML     4,135 Downloads   7,278 Views  


This paper presents a study on the biotic/abiotic conditions of the S?o Giácomo sanitary landfill, located near the city of Caxias do Sul, Brazil, through statistical analysis of fourteen physic-chemical data sets for the leachate, produced in the garbage dump site over a long period of years. Different chemometric methods are used in the statistical analysis. For example, the correlations between the variables, related to the degraded organic matter and biological activity, are determined by means of multivariate methods. The results highlight that BOD, COD, VTS, FTS and TS give information on the anaerobic degradation of the organic matter contained in the cells, and suggest that the greater the contribution of the variables with positive weights in PC1 the greater the level of organic matter degradation. The variables TN, Amon Nit. and alkalinity are related to the biological activity and determine the potency of the variables in relation to time. The greater the contribution of the variables related to organic degradation the greater the values in PC2 and the lesser the potency of these variables, whose influence is greater in the second stage of anaerobic degradation. The variables of PC2 is important plans of the contamination of the leached in the bodies hídrics.

Share and Cite:

A. Grisa, C. Paese, O. Dotto, R. Nicola and M. Zeni, "Chemometric Analysis of an Sanitary Landfill Leachate," Journal of Water Resource and Protection, Vol. 4 No. 1, 2012, pp. 16-24. doi: 10.4236/jwarp.2012.41003.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] S. R. Qasin and W. Chiang, “Sanitary Landfill Leachate: Generation, Control and Treatment,” Technomic Publishing Company, Lancaster, 1994.
[2] G. Andreotta and P. Cannas, “Chemical and Biological Cha- racteristics of Landfill Leachte,” In: Landfilling of Waste: Leachate, 2nd Edition, Chapman and Hall Ltd, London, 1997, pp. 65-88.
[3] D. Augenstein and J. Pacey, “Modeling Landfill Methane Generation,” Proceedings of 3rd International Landfill Symposium, Cagliari, 1991, pp. 115-148.
[4] L. F. Sá, “Evapora??o Natural do Lixiviado do Aterro de Muribeca Através de um Destilado Solar. Master, Pro- grama de Pós Gradua??o em Engenharia Civil, Centro Tecnologia e Geociências, Universidade do Pernambuco (UFPE), Recife, 2008.
[5] T. H. Christensen and R. Cossu, “Landfill Leachate: An Introduction,” In: Landfilling of Waste: Leachate, 2nd Edi- tion, Chapman and Hall Ltd, London, 1997, pp. 3-13.
[6] J. M. Lema, R. Mendez and R. Blazquez, “Characteristics of Landfill leachates and Alternatives for Their Treatment: A Review,” Water, Air and Soil Pollution, Vol. 40, No. 3-4, 1988, pp. 223-250.
[7] P. Y. Jokela, R. H. Kettunen, K. M. Sormunen and J. A. Rintala, “Biological Nitrogen Removal from Municipal Landfill Leachate: Low-Cost Nitrification in Biofilters and Laboratory Scale in-Situ Denitrification,” Water Research, Vol. 36, No. 16, 2002, pp. 4079-4087. doi:10.1016/S0043-1354(02)00129-X
[8] P. Kjeldsen, M. A. Barlaz, A. P. Rooker, A. Bauna and T. H. Christensen, “Present and Long-Term Composition of MSW Landfill Leachate: A Review,” Critical Reviews in Environmental Science and Technology, Vol. 32, No. 4, 2002, pp. 297-336. doi:10.1080/10643380290813462
[9] M. Avella, E. Bonadies, E. Martuscelli and M. Rimedio, “European Current Standardization for Plastics Packaging Recoverable though Composting and Biodegradation,” Polymer Testing, Vol. 20, No. 5, 2001, pp. 517-521. doi:10.1016/S0142-9418(00)00068-4
[10] CODECA, Companhia de Desenvolvimento de Caxias do Sul Relatório de Monitoramento Ambiental do Aterro Sanitário S?o Giácomo, Caxias do Sul, 2001.
[11] D. B. Voncina, D. Dobcnik, M. Novic and J. Zupan, “Chemometrics Characterization of the Quality of River Water,” Analytical Chimica Acta, Vol. 462, No. 1, 2002, pp. 87-100. doi:10.1016/S0003-2670(02)00298-2
[12] B. Walczak and D. L. Massart, “Dealing with Missing Data,” Chemometrics and Intelligent Laboratory Systems, Vol. 58, No. 1, 2001, pp. 15-27. doi:10.1016/S0169-7439(01)00131-9
[13] M. P. Kallio, S.Mujunen, G. Hatzimihalis, P. Koutoufides, P. Minkkinen, P. Wilkie and M. Connor, “Multivariate Data Analysis of Key Polluants in Sewage Samples: A Case Study. Analytica Chimica Acta, Vol. 393, No. 1-3, 1999, pp. 181-191. doi:10.1016/S0003-2670(99)00287-1
[14] I. T. Jolliffe, “Principal Component Analysis,” Springer- Verlag, New York, 2002.
[15] K. Singh, A. Malik, V. K. Singh, D. Mohan and S. Sinha, “Chemometrics Analysis of Groundwater Data of Alluvial Aquifer of Gangetic Plain, North India,” Analytica Chimica Acta, Vol. 550, No. 1-2, 2005, pp. 82-91. doi:10.1016/j.aca.2005.06.056
[16] M. Sena and R. Poppi, “Avalia??o do uso de Métodos Quimiométricos em Análise de Solos,” Química Nova, Vol. 23, No. 2000, pp. 547-556. doi:10.1590/S0100-40422000000400019
[17] C. Pérez, “Técnicas Estadísticas com SPSS,” Pearson Educacion, Madrid, 2001.
[18] J. E. Jackson, “A User Guide to Principal Components,” John Wiley & Sons, Inc., Hoboken, 2003.
[19] A. M. C. Grisa and M. Zeni, “Estudio de la Degradación de los Polímeros Commodities en el Medio Ambiente,” Tese de Doutorado, León, 2004.
[20] D. Kulikowska and E. Klimiuk, “The Effect of Landfill Age on Municipal Leachate Composition,” Bioresource Technology, Vol. 99, No. 13, 2008, pp. 5981-5985. doi:10.1016/j.biortech.2007.10.015

comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.