Sustainable Cement Production with Improved Energy Efficiency and Emerging CO2 Mitigation
Shuangzhen Wang, Xiaochun Han
DOI: 10.4236/aces.2012.21015   PDF   HTML     7,957 Downloads   15,360 Views   Citations


This paper studies the current strategies of energy efficiency improvement, CO2 capture in cement production and fly ash blended cement and concrete. Application of updated technology in newly industrialized countries (especially China) has improved energy efficiency due to their (its) dominant global cement production shares. Waste heat recovery (WHR) increases its energy efficiency. CO2 capture from cement plants will be more efficient than that from pulverized coal fired power plant. This paper might serve as a guide for the technology improvement, energy policy making and environmental protection in cement production.

Share and Cite:

S. Wang and X. Han, "Sustainable Cement Production with Improved Energy Efficiency and Emerging CO2 Mitigation," Advances in Chemical Engineering and Science, Vol. 2 No. 1, 2012, pp. 123-128. doi: 10.4236/aces.2012.21015.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] USGS Cement Statistics,
[2] H. G. van Oss, “US and World CEMENT Production 2008 and 2009,” USGS Online Survey, 2010.
[3] W. T. Choate, “Energy and Emission Reduction Opportunities for the Cement Industry,” Prepared under Contract for: Industrial Technologies Program, US DOE Energy Efficiency and Renewable Energy, 29 December 2003.
[4] M. Taylor, C. Tam and D. Gielen “Energy Efficiency and CO2 Emissions from the Global Cement Industry,” Energy Efficiency and CO2 Emission Reduction Potentials and Policies in the Cement Industry, IEA, Paris, 4-5 September 2006.
[5] N. T. Zheng, and G. David, “How Can China Lighten up? Urbanization, Industrialization and Energy Demand Scenarios,” U.S. Department of Energy under Contract No. DE-AC02-05CH11231, Lawrence Berkeley National Laboratory, LBNL Paper LBNL-3527E, July 2009.
[6] H. F. W. Taylor, “Cement Chemistry,” Thomas Telford Publishing, Singapore City, 1997. doi:10.1680/cc.25929
[7] C. A. Hendriks, E. Worrell, D. DeJager, K Block and P. Riemer, “Emission Reduction of Greenhouse Gases from the Cement Industry,” IEA Greenhouse gas R&D Programme, 2000.
[8] T. Sui Presentation “A Brief on China Cement Status— Towards a Sustainable Industry,” IEA-BEE International Workshop on Industrial Energy Efficiency, New Dehli, 27-28 January 2010.
[9] E. G. Beck, “180 Years Atmospheric CO2 Gas Analysis by Chemical Method,” Energy and Environment, Vol. 18, No. 2, 2007. doi:10.1260/095830507780682147
[11] International Energy Agency, “The Reduction of Greenhouse Gas Emissions from the Cement Industry,” IEA, Paris, 1999.
[13] APP China Cement Task Force, “Status Report of China Cement Industry,” 8th CTF Meeting, Vancouver, 24 March 2010.
[14] Z. G. Yuan and H. Liu, “Soft Sensor for Apparent Degree of Calcination in NSP Cement Production Line,” The 2nd International Conference on Computer and Automation Engineering (ICCAE), Singapore City, 26-28 February 2010 pp. 473-478.
[16] A. Hasanbeigi, L. Price, H. Lu and L. Wang, “Analysis of Energy-Efficiency Opportunities for the Cement Industry in Shandong Province, China: A Case Study of 16 Cement Plants,” Energy, Vol. 35, 2010, pp. 3461-3473. doi:10.1016/
[17] Q. Yan, C. Zhou, P. Qu and R. Zhang, “The Promotion of Clean Development Mechanism to Cement Industry Capturing Waste Heat for Power Generation in China,” Mitigation Adapt Strategy Global Change, Vol. 14, No. 8, 2009, pp. 793-804. doi:10.1007/s11027-009-9199-0
[18] J. Wang, Y. Dai and L. Gao, “Energy Analyses and Parametric Optimizations for Different Cogeneration Power Plants in Cement Industry,” Applied Energy, Vol. 86, No. 6, 2009, pp. 941-948. doi:10.1016/j.apenergy.2008.09.001
[19] P. S. Bundela and V. Chawla, “Sustainable Development through Waste Heat Recovery,” American Journal of Environmental Sciences, Vol. 6, No. 1, 2010, pp. 83-89. doi:10.3844/ajessp.2010.83.89
[20] K. Umamaheswar, “Waste Heat Recovery,” US Department of Energy Gulf Coast Clean Energy Application Center Cement Industry Online Webinar, 26 May 2011.
[21] M. D. Mirolli “Cementing Kalina Effectiveness,” IEEE Industry Applications Magazine, July-August 2006.
[22] E. Worrell, L. Price, N. Martin, C. Hendriks and O. L. Meida, “Carbon Dioxide Emissions from the Global Cement Idustry,” Annual Review Energy Environment, Vol. 26, 2001, pp. 303-329. doi:10.1146/
[23] J. Marion, N. Nsakala, T. Griffin and A. Bill, “Controlling Power Plant CO2 Emissions: A Long Range View,” 1st National Conference on Carbon Sequestration, National Energy and Technology Laboratory, 14-17 May 2001.
[24] D. J. Barker, S. A. Turner, P. A. Napier-Moore, M. Clark M. and J. M. Davison, “CO2 Capture in Cement Industry,” Energy Procedia, Vol. 1, No. 1, 2009, pp. 87-94. doi:10.1016/j.egypro.2009.01.014
[25] C. Alie, L. Backham, E. Croiset and P. L. Douglas, “Simulation of CO2 Capture Using MEA Scrubbing: A Flowsheet Decomposition Method,” Energy Conversion and Management, Vol. 46, No. 3, 2005, pp 475-487. doi:10.1016/j.enconman.2004.03.003
[26] M. T. Ho, G. W. Allinson and D. E. Wiley, “Comparison of MEA Capture Cost for Low CO2 Emissions Sources in Australia,” International Journal of Greenhouse Gas Control, Vol. 5, No. 1, 2010, pp. 49-60. doi:10.1016/j.ijggc.2010.06.004
[27] R. Bounaceur, N. Lape, D. Roizard, C. Vallieres and E. Favre, “Membrane Processes for Post-Combustion Carbon Dioxide Capture: A Parametric Study,” Energy, Vol. 31, No. 14, 2006, pp. 2556-2570. doi:10.1016/
[28] M. C. Trachtenberg, R. M. Cowan, D. A. Smith, D. A. Horazak, M. D. Jensen, J. D. Laumb, A. P. Vucelic, H. Chen, L. Wang and X. Wu, “Membrane-Based, Enzyme-Facilitated, Efficient Carbon Dioxide Capture,” Energy Procedia, Vol. 1, 2009, pp. 353-360. doi:10.1016/j.egypro.2009.01.048
[29] V. Manovic and E. J. Anthony, “Lime-Based Sorbents for High-Temperature CO2 Capture—A Review of Sorbent Modification Methods,” International Journal of Environmental Research and Public Health, Vol. 7, No. 8, 2010, pp. 3129-3140. doi:10.3390/ijerph7083129
[30] C. Abanades, “Calcium Sorbent Cycling for Simultaneous CO2 Capture and Clinker Production,” Presented at GCEP Stanford, 22 April 2008.
[31] R. Helmuth, “Fly Ash in Cement and Concrete,” Portland Cement Association, June 1987.
[32] S. Mindness, F. J. Young and D. Darwin, “Concrete,” 2nd Edition, Prentice Hall, Upper Saddle River, 30 August 2002.
[33] 2011.
[34] P. W. Gao, S. X. Wu, P. H. Lin, Z. R. Wu, and M. S. Tang, “Effect of Fly Ash on Deformation of Roller- Compacted Concrete,” ACI Materials Journal, Vol. 103, No. 5, 2006, pp. 336-339
[35] 2011.
[36] P. W. Gao, X. L. Lu, H. Lin, X. Li and J. Hou, “Effects of Fly Ash on the Properties of Environmentally Friendly Dam Concrete,” Fuel, Vol. 86, No. 7-8, 2007, pp. 1208-1211. doi:10.1016/j.fuel.2006.09.032
[37] ACAA 2008 CCP Report, American Coal Ash Association.
[38] S. Wang and L. Baxter “Comprehensive Study of Biomass Fly Ash in Concrete: Strength, Microscopy, Kinetics and Durability,” Fuel Processing Technology, Vol. 88, No. 11-12, 2007, pp. 1165-1170. doi:10.1016/j.fuproc.2007.06.016
[39] S. Wang, A. Miller, E. Llamazos, F. Fonseca and L Baxter, “Biomass Fly Ash in Concrete: Mixture Proportioning and Mechanical Properties,” Fuel, Vol. 87, No. 3, 2008, pp. 365-371. doi:10.1016/j.fuel.2007.05.026
[40] S. Wang, E. Llamazos, L. Baxter and F. Fonseca, “Durability of Biomass Fly Ash Concrete: Freezing and Thawing and Rapid Chloride Permeability Tests,” Fuel, Vol. 87, No. 3, 2008, pp. 359-364. doi:10.1016/j.fuel.2007.05.027
[41] S. Wang, L. Baxter and F. Fonseca, “Biomass Fly Ash in Concrete: SEM, EDX and ESEM Analysis,” Fuel, Vol. 87, No. 3, 2008, pp. 372-379. doi:10.1016/j.fuel.2007.05.024
[42] S. Wang and L. Baxter, “Biomass Ash in Concrete-Mitigation of Alkali Silica Reactions (ASRs) Expansions with Different Opal Percentages,” Key Engineering Materials, Vol. 400-402, 2009, pp. 131-136. doi:10.4028/
[43] A. Johnson, J. J. Catalan and S. D. Kinrade, “Characterization and Evaluation of Fly-Ash from Co-Combustion of Lignite and Wood Pellets for Use as Cement Admixture,” Fuel, Vol. 89, No. 10, 2010, pp. 3042-3050. doi:10.1016/j.fuel.2010.05.027

Copyright © 2021 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.