Low Molecular Weight Poly(Lactide-co-Caprolactone) for Tissue Adhesion and Tetracycline Hydrochloride Controlled Release in Wound Management


The use of biopolymers as bioadhesives for human tissue is becoming a preferred alternative to suturing due to their superior adhesive, biocompatible, and biodegradable properties. In this work, low molecular weight poly(L-lactide-co-ε-caprolactone) (P(LA-co-CL) was synthesized to achieve the glass transition temperature (Tg) of the copolymer at ambient temperature so that during application on the skin, the copolymer when combined with chitosan (CHI) into the CHI/P(LA-co-CL) film could provide the strong support at the injury site. Using alcohols with different numbers of hydroxyl groups as the co-initiator in polymerization provided the distinctive characteristics of copolymers. Among all copolymers synthesized, P(LA-co-CL) copolymer using pentaerythritol as the co-initiator when combined with CHI at the ratio of copolymer/CHI at 70/30 yielded the good film properties in tissue adhesion and tetracycline hydrochloride release.

Share and Cite:

S. Sriputtirat, W. Boonkong, S. Pengprecha, A. Petsom and N. Thongchul, "Low Molecular Weight Poly(Lactide-co-Caprolactone) for Tissue Adhesion and Tetracycline Hydrochloride Controlled Release in Wound Management," Advances in Chemical Engineering and Science, Vol. 2 No. 1, 2012, pp. 15-27. doi: 10.4236/aces.2012.21003.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] E. R. Kenawy, G. L. Bowlin, K. Mansfield, J. Layman, D. G. Simpsonc, E. H. Sandersb and G. E. Wneka, “Release of Tetracycline Hydrochloride from Electrospun Poly(Ethylene-co-Vinylacetate), Poly(Lactic Acid), and a Blend,” Journal of Controlled Release, Vol. 81, No. 1-2, 2002, pp. 57-64. doi:10.1016/S0168-3659(02)00041-X
[2] Northern Health and Social Services Board, “NHSSB Wound Management Manual,” Database on the Internet, 2011. http://www.nhssb.n-i.nhs.uk/publications/primary_care/Wound_Manual.pdf
[3] D. T. Foster and L. J. Rowedder, “Reese SK. Management of Sports-Induced Skin Wounds,” Journal of Athletic Training, Vol. 30, No. 2, 1995, pp. 135-144.
[4] L. Montanaro, C. R. Arciola, E. Cenni, G. Ciapetti, F. Savioli, F. Filippini and L. A. Barasanti, “Cytotoxicity, Blood Compatibility and Antimicrobial Activity of Two Cyanoacrylate Glues for Surgical Use,” Biomaterials, Vol. 22, No. 1, 2001, pp. 59-66. doi:10.1016/S0142-9612(00)00163-0
[5] S. K. Agrawal, N. S. DeLong, J. M. Coburn, G. N. Tew and S. R. Bhatia, “Novel Drug Release Profiles from Micellar Solutions of PLA-PEO-PLA Triblock Copolymers,” Journal of Controlled Release, Vol. 112, No. 1, 2006, pp. 64-71. doi:10.1016/j.jconrel.2005.12.024
[6] A. Gallardo, J. L. Eguiburu, M. J. Fernandez Berridi and J. S. Roman, “Preparation and in Vitro Release Studies of Ibuprofen-Loaded Films and Microspheres Made from Graft Copolymers of Poly(L-Lactic Acid) on Acrylic Backbones,” Journal of Controlled Release, Vol. 55, No. 2-3, 1998, pp. 171-179. doi:10.1016/S0168-3659(98)00047-9
[7] J. H. Lee, A. K. Go, S. H. Oh, K. E. Lee and S. H. Yuk, “Tissue Anti-Adhesion Potential of Ibuprofen-Loaded PLLA-PEG Diblock Copolymer Films,” Biomaterials, Vol. 26, No. 6, 2005, pp. 671-678. doi:10.1016/j.biomaterials.2004.03.009
[8] L. B. Peppas, “Polymers in Controlled Drug Delivery,” Biomaterials, 1997, p. 42. http://www.scribd.com/doc/15042915/polymer-in-drug-delivery.
[9] F. Wang, T. Lee and C. H. Wang, “PEG Modulated Release of Etanidazole from Implantable PLGA/PDLA Discs,” Biomaterials, Vol. 17, 2002, pp. 3555-3566. doi:10.1016/S0142-9612(02)00034-0
[10] D. Cohn and G. Lando, “Tailoring Lactide/Caprolactone Co-Oligomers as Tissue Adhesives,” Biomaterials, Vol. 25, No. 27, 2004, pp. 5875-5884. doi:10.1016/j.biomaterials.2004.01.040
[11] T. B. Reece, T. S. Maxey and I. L. Kron, “A Prospectus on Tissue Adhesives,” American Journal of Surgery, Vol. 182, No. 2, 2001, pp. 40S-44S. doi:10.1016/S0002-9610(01)00742-5
[12] Y. Baimark, N. Niamsa, N. Morakot, J. Threeprom and Y. Srisuwan, “Preparation and Morphology Study of Biodegradable Chitosan/Methoxy Poly(Ethylene Glycol)-b-Poly (ε-Caprolactone) Nanocomposite Films,” International Journal of Polymer Analysis and Characterization, Vol. 12, No. 6, 2007, pp. 457-467.
[13] H. Korhonen, A. Helminen and J. V. Seppala, “Synthesis of Polylactides in the Presence of Co-Initiations with Different Numbers of Hydroxyl Groups,” Polymer, Vol. 42, No. 18, 2001, pp. 7541-7549. doi:10.1016/S0032-3861(01)00150-1
[14] H. M. Younes, E. B. Grimaldo and B. G. Amsden, “Synthesis, Characterization and in Vitro Degradation of a Biodegradable Elastomer,” Biomaterials, Vol. 25, No. 22, 2004, pp. 5261-5269. doi:10.1016/j.biomaterials.2003.12.024
[15] P. Perugini, I. Genta, B. Conti, T. Modena and F. Pavanetto, “Periodontal Delivery of Ipriflavone: New Chitosan/PLGA Film Delivery System for a Lipophilic Drug,” International Journal of Pharmaceutics, Vol. 252, No. 1-2, 2003, pp. 1-9. doi:10.1016/S0378-5173(02)00602-6
[16] A. L. Pataro, C. F. Franco, V. R. Santos, M. E. Cortes and R. D. Sinisterra, “Surface Effects and Desorption of Tetracycline Supramolecular Complex on Bovine Dentine,” Biomaterials, Vol. 24, No. 6, 2003, pp. 1075-1080. doi:10.1016/S0142-9612(02)00403-9
[17] A. Budhian, S. J. Siegel and K. I. Winey, “Controlling the in Vitro Release Profiles for a System of Haloperidol-Loaded PLGA Nanoparticles,” International Journal of Pharmaceutics, Vol. 346, No. 1-2, 2008, pp. 151-159. doi:10.1016/j.ijpharm.2007.06.011

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.