New Pineapple Somaclonal Variants: P3R5 and Dwarf


The Food and Agriculture Organization has highlighted pineapple as one of the most important tropical fruits. Since classical pineapple breeding is difficult, biotechnology has emerged as an attractive instrument. We obtained two new pineapple somaclonal variants derived from in vitro culture of cv. Red Spanish Pinar: P3R5 and Dwarf. The AFLP analysis revealed an existing genetic distance. So far 44 phenotype indicators selected due to their relation to a wide range of important agricultural, morphological and physiological processes have been evaluated. P3R5 differed from the donor in 19 variables (19/44; 43.18%), while Dwarf varied in 31 indicators (31/44; 70.45%). The number of shoots was significantly different among the three plant materials. Dwarf showed two shoots per plant while P3R5 and the donor did not form any shoots. We also observed that water use efficiency, chlorophyll b concentration, total chlorophyll concentration, transpiration rate, chlorophyll a concentration, thickness of leaf photosynthetic parenchyma, fruit mass with crown, content of free phenolics and superoxide dismutase specific activity were also very different among the three plant materials. The Euclidean distances of each somaclonal variant to the donor plant material taking into consideration the genotype (AFLP) and the phenotype evaluations were also calculated. Regarding the genotype information, P3R5 is separated from cv. Red Spanish Pinar by 2.83 units of Euclidean distance, and Dwarf by 3.00 units. However, the phenotype indicators revealed higher differences: 3.74 in P3R5 and 4.71 in Dwarf. To our knowledge, this is the first report of a comprehensive analysis of pineapple somaclonal variants.

Share and Cite:

G. Pérez, E. Yanez, A. Mbogholi, B. Valle, F. Sagarra, L. Yabor, C. Aragón, J. González, M. Isidrón and J. Lorenzo, "New Pineapple Somaclonal Variants: P3R5 and Dwarf," American Journal of Plant Sciences, Vol. 3 No. 1, 2012, pp. 1-11. doi: 10.4236/ajps.2012.31001.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] FAOSTAT, “FAO Statistic Division,” 2010.
[2] D. D. Williams and H. Fleich, “Historical Review of Pineapple Breeding in Hawaii,” Acta Horticulturae, Vol. 334, 1993, pp. 67-76.
[3] M. Fitchet, “Observations on Pineapple Improvement in Taiwan, Republic of China,” Subtropica, Vol. 10, No. 11, 1989, pp. 10-12.
[4] Y. K. Chan, “Performance and Stability of Pineapple Hybrids in G × E Trial in Malaysia,” Acta Horticulturae, Vol. 425, 1997, pp. 201-211.
[5] Y. C. Wee, “The Masmerah Pineapple: A New Cultivar for the Malaysian Pineapple Industry,” Wold Crops, Vol. 26, No. 2, 1974, pp. 67-76.
[6] Y. K. Chan and C. K. Lee, “The Hybrid 1 Pineapple: A New Canning Variety Developed at MARDI,” Teknologi Buah-buahan, Vol. 1, 1985, pp. 24-30.
[7] Y. K. Chan and H. K. Lee, “Josapine: A New Pineapple Hybrid Developed at MARDI,” Malaysia, 1996, pp. 217-220.
[8] O. D. Ramírez, H. Gandía and F. H. Vélez, “P.R.1-67 a New Pineapple Selection,” Fruit Varieties Horticultural Digest, Vol. 26, No. 1, 1972, pp. 13-15.
[9] C. Loison-Cabot, “Practice of Pineapple Breeding,” Acta Horticulturae, Vol. 196, 1987, pp. 25-36.
[10] V. M. Villegas, R. B. Pementel, S. V. Siar and E. R. Barile, “Preliminary Evaluation of Promising Pineapple Hybrids,” CIRAD-ISMS, Martinique, 1995.
[11] J. R. S Cabral, A. P. de Matos and G. Da Cunha, “Selection of Pineapple Cultivars Resistant to Fusariose,” Acta Horticulturae, Vol. 334, 1993, pp. 53-58.
[12] J. R. S Cabral, A.P. de Matos and G. Coppens d’Eeckenbrugge, “Segregation for Resistant to Fusariose Leaf Colour and Leaf Margin Type from the EMBRAPA Pineapple Hibridization Programme,” Acta Horticulturae, Vol. 425, 1997, pp. 153-200.
[13] R. Benega, A. Cisneros, M. Hidalgo, J. Martínez, E. Arias, M. Arzola, C. Carvajal and M. Isidrón, “Hybridization in Pineapple: Results and Strategies to Save Time for Obtaining and Releasing New Hybrid Varieties for Growers,” Third International Pineapple Symposium, Thailand, 1998, pp. 15-16.
[14] G. M. Sanewski, “The Australian Pineapple Fresh Market Breeding Program,” Third International Pineapple Symposiu,m Thailand, 1998, p.51.
[15] G. Coppens d’Eeckenbrugge and M. F. Duval, “Pineapple Breeding at CIRAD. II. Evaluation of ‘Scarlet’, a New Hybrid for the Fresh Fruit Market, as Compared to Smooth Cayenne,” Acta Horticulturae, Vol. 529, 2000, pp. 155-163.
[16] D. P. Bartholomew, G. Coppens d’Eeckenbrugge and C. C. Chen, “Register of New Fruit and Nut Cultivars,” HortScience, Vol. 45, No. 5, 2010, pp. 740-742.
[17] C. Cabot and J. C. Lacoevilhe, “A Genetic Hybridization Programme for Improving Pineapple Quality,” Acta Horticulturae, Vol. 275, 1990, pp. 395-400.
[18] S. Sripaoraya, R. Marchant, J. B. Power, M. R. Davey, “Herbicide-Tolerant Transgenic Pineapple (Ananas comosus) Produced by Microprojectile Bombardment,” Annals of Botany, Vol. 88, No. 4, 2001, pp. 597-603. doi:10.1006/anbo.2001.1502
[19] S. Sripaoraya, S. Keawsompong, P. Insupa, M. R. Davey, J. B. Power and P. Srinives, “Evaluation of Transgene Stability, Gene Expression and Herbicide Tolerance of Genetically Modified Pineapple under Field Conditions,” Acta Horticulturae, Vol. 702, 2006, pp. 37-40.
[20] P. Espinosa, J. C. Lorenzo, A. Iglesias, L. Yabor, E. Menéndez, J. Borroto, L. Hernández and A. D. Arencibia, “Production of Pineapple Transgenic Plants Assisted by Temporary Immersion Bioreactors,” Plant Cell Report, Vol. 21, No. 2, 2002, pp. 136-140. doi:10.1007/s00299-002-0481-9
[21] J. R. Botella and D. J. Fairbairn, “Present and Future Potential of Pineapple Biotechnology,” Acta Horticulturae, Vol. 666, 2005, pp. 23-28.
[22] J. D. Carlier, G. Coppens d’Eeckenbrugge and J. M. Leit?o, “Pineapple. Genome Mapping and Molecular Breeding in Plants Vol. 4. Fruits and Nuts,” In: C. Kole, Ed., Springer-Verlag, Berlin, 2007, pp. 331-342.
[23] L. Yabor, B. Valle, C. Carvajal, C. Aragón, M. Hernández, J. González, M. Daquinta, A. Arencibia and J. C. Lorenzo, “Characterization of a Field-Grown Transgenic Pineapple Clone Containing the Genes Chitinase, AP24, and Bar,” In Vitro Cell Developmental Biology—Plant, Vol. 46, No. 1, 2009, pp. 1-7.
[24] V. Cardoza and N. C. Stewart, “Brassica Biotechnology: Progress in Cellular and Molecular Biology,” In Vitro Cell Developmental Biology—Plant, Vol. 40, 2004, pp. 542-551.
[25] P. J. Larkin and W. R. Scowcroft, “Somaclonal Variationa Novel Source of Variability from Cell Culture for Plant Improvement,” Theoretical Applied Genetic, Vol. 60, No. 4, 1981, pp. 197-214. doi:10.1007/BF02342540
[26] N. F. Castillo, N. V. Bassil, S. Wada and B. M. Reed, “Genetic Stability of Criopreserved Shoot Tips of Rubus Germplasm,” In Vitro Cell Developmental Biology— Plant, Vol. 46, 2010, pp. 246-256.
[27] R. Aversano, S. Savarese, J. M. De Nova, L. Frusciante, M. Punzo and D. Carputo, “Genetic Stability at Nuclear and Plastid DNA Level in Regenerated Plants of Solanum Species and Hybrids,” Euphytica, Vol. 165, No. 2, 2009, pp. 353-361. doi:10.1007/s10681-008-9797-z
[28] M. J. Smulders, W. Rus-Kortekaas and L. J. W. Gilissen, “Natural Variation in Patterns of Polysomaty among Individual Tomato Plants and Their Regenerated Progeny,” Plant Science, Vol. 106, No. 2, 1995, pp. 129-139. doi:10.1016/0168-9452(95)04082-6
[29] J. L. Fourré, P. Berger, L. Niquet and P. André, “Somatic Embryogenesis and Somaclonal Variation in Norway Spruce: Morphogenetic, Cytogenetic and Molecular Approaches,” Theoretical Applied Genetic, Vol. 94, No. 2, 1997, pp. 159-169. doi:10.1007/s001220050395
[30] B. Rival, L. Bertrand, T. Beale, M. C. Combes, P. Touslot and P. Leshermes, “Suitability of RAPD Analysis for Detection of Somaclonal Variation in Oil Palm (Elaeis guineensis Jacq.),” Plant Breeding, Vol. 117, No. 1, 1998, pp. 73-76. doi:10.1111/j.1439-0523.1998.tb01451.x
[31] H. Bouman and G. J. De Klerk “Measurement of the Extent of Somaclonal Variation in Begonia Plants Regenerated under Various Conditions. Comparison of Three Assays,” Theoretical Applied Genetic, Vol. 102, No. 1, 2001, pp. 111-117. doi:10.1007/s001220051625
[32] M. Martins, D. Sarmento and M. M. Oliveira, “Genetic Stability of Micropropagated Almond Plantlets, as Assessed by RAPD and ISSR Markers,” Plant Cell Report, Vol. 23, No. 7, 2004, pp. 492-496. doi:10.1007/s00299-004-0870-3
[33] L. Barandalla, E. Ritter and J. I. Ruiz, “Oryzalin Treatment of Potato Diploids Yields Tetraploid and Chimeric Plants from which Euploids Could Be Derived by Callus Induction,” Potato Research, Vol. 10, 2006, pp. 143-154.
[34] S. K. Sharma, G. J. Bryan, M. O. WinWeld and S. Millam, “Stability of Potato (Solanum tuberosum L.) Plants Regenerated via Somatic Embryos, Axillary Bud Proliferated Shoots, Microtubers and True Potato Seeds: A Comparative Phenotypic, Cytogenetic and Molecular Assessment,” Planta, Vol. 226, No. 6, 2007, pp. 1449-1458. doi:10.1007/s00425-007-0583-2
[35] E. Piccioni, G. Barcaccia, M. Falcinelli and A. Standardi, “Estimating Somaclonal Variation in Axillary Branching Propagation and Indirect Somatic Embryogenesis by RAPD Fingerprinting,” International Journal Plant Science, Vol. 158, No. 5, 1997, pp. 556-562. doi:10.1086/297467
[36] W. L. Guo, L. Gong, Z. F. Ding, Y. D. Li, F. X. Li, S. P. Zhao and B. Liu, “Genomic Instability in Phenotypically Normal Regenerants of Medicinal Plant Codonopsis lanceolata Benth. et Hook. as Revealed by ISSR and RAPD Markers,” Plant Cell Report, Vol. 25, No. 9, 2006, pp. 896-906.
[37] M. A. Palombi, B. Lombardo and E. Caboni, “In Vitro Regeneration of Wild Pear (Pyrus pyraster Burgsd) Clones Tolerant to Fechlorosis and Somaclonal Variation Análisis by RAPD Markers,” Plant Cell Report, Vol. 26, No. 4, 2007, pp. 489-496. doi:10.1007/s00299-006-0256-9
[38] K. Wakasa, “Use of Tissue Culture for Propagation and Mutant Induction in Ananas comosus,” National Institution Agriculture Science Annual Report, Tokyo, 1977.
[39] K. Wakasa, “Pineapple (Ananas comosus L. Merr ),” In: Y. P. S. Bajaj, Ed., Biotechnology in Agriculture and Forestry, Springer Verlag, Berlin, 1989, pp. 13-29.
[40] M. G. Dewald, G. A. Moore, W. B. Sherman and M. H. Evans, “Production of Pineapple Plants in Vitro,” Plant Cell Report, Vol. 7, No. 7, 1988, pp. 535-537. doi:10.1007/BF00272750
[41] J. L. Lii, E. Rosa-Márquez and E. Lizard, “Smooth Leaf (Spineless) Red Spanish Pineapple (Ananas comosus) Propagated in Vitro,” Journal of Agriculture University Puerto Rico, Vol. 73, 1989, pp. 15-17.
[42] S. Feuser, M. Kelen, M. Daquinta and R. Onodari, “Genotypic Fidelity of Micropropagated Pineapple (Ananas comosus) Plantlets Assessed by Isozyme and RAPDs,” Plant Cell Tissue Organ Culture, Vol. 72, No. 3, 2003, pp. 221-227. doi:10.1023/A:1022321405683
[43] G. Pérez, E. Yanez, M. Isidrón, J.C. Lorenzo, “Phenotypic and AFLP Characterization of Two New Pineapple Somaclones Derived from in Vitro Culture,” Plant Cell Tissue Organ Culture, Vol. 96, No. 1, 2009, pp. 113-116. doi:10.1007/s11240-008-9463-0
[44] G. Pérez, A. Mbogholi, F. Sagarra, C. Aragón, J. González, M. Isidrón and J. C. Lorenzo, “Morphological and Physiological Characterization of Two New Pineapple Somaclones Derived from in Vitro Culture,” In Vitro Cell Developmental Biology—Plant, Vol. 47, No. 3, 2011, pp. 428-433. doi:10.1007/s11627-011-9342-y
[45] M. Daquinta and R. Benega, “Brief Review of Tissue Culture of Pineapple,” Pineapple News, Vol. 3, 1997, pp. 7-9.
[46] T. Murashige and F. Skoog, “A Revised Medium for Rapid Growth and Bioassays with Tobacco Tissue Cultures,” Physiologia Plantarum, Vol. 15, No. 3, 1962, pp. 473-497. doi:10.1111/j.1399-3054.1962.tb08052.x
[47] E. Yanez, K. Gil, L. Rebolledo, D. Uriza, O. Martínez, M. Isidrón and J. Simpson, “AFLP Characterization of the Mexican Pineapple Collection,” Journal American Society Horticultural Sciences, Vol. 18, 2004, pp. 36-41.
[48] P. Vost, R. Hgogers, R. Bleeker, T. Van de Lee and M. Homes, “AFLP: A New Technique for DNA Fingerprinting,” Nucleic Acids Research, Vol. 23, No. 21, 1995, pp. 4407-4414. doi:10.1093/nar/23.21.4407
[49] F. J. Rohlf, “NTSYS-Pc: Numerical Taxonomy and Multivariate Analysis System (Version 2.1),” Exeter Software, Setauket, 2000.
[50] C. Py, J. J. Lacoeuilhe and C. Teisson, “The Pineapple: Cultivation and Uses,” Maisonneuve & Larose, Paris, 1987.
[51] D. A. Johansen, “Plant Microtechnique,” McGraw-Hill Book, New York. 1949.
[52] R. J. Porra, “The Chequered History of the Development and Use of Simultaneous Equations for the Accurate Determination of Chlorophylls a and b,” Photosynthesis Research, Vol. 73, No. 1-3, 2002, pp. 149-156. doi:10.1023/A:1020470224740
[53] R. L. Heath and J. Packer, “Photoperoxidation in Isolated Chloroplast: I. Kinetics and Stoichiometry of Fatty Acid Peroxidation,” Archives of Biochemistry and Biophysics, Vol. 125, No. 1, 1968, pp. 189-198. doi:10.1016/0003-9861(68)90654-1
[54] S. I. Gurr, J. McPherson and D. J. L. Bowles, “Lignin and Associated Phenolic Acids in Cell Walls,” In: D. L. Wilkinson, Ed., Molecular Plant Pathology, Oxford, 1992, pp. 51-56.
[55] M. M. Bradford, “A Rapid and Sensitive Method for the Quantification of Microgram Quantities of Protein Utilising the Principle of Protein-Dye Binding,” Analytical Biochemistry, Vol. 72, No. 1-2, 1976, pp. 248-254. doi:10.1016/0003-2697(76)90527-3
[56] J. Jorrin and R. A. Dixon, “Stress Responses in Alfalfa (Medicago sativa L.). II. Purification, Characterization, and Induction of Phenylalanine Ammonia-Lyase Isoforms from Elicitor-Treated Cell Suspension Cultures,” Plant Physiology, Vol. 92, No. 2, 1990, pp. 447-455. doi:10.1104/pp.92.2.447
[57] J. McCord and I. Fridovich, “Superoxide Dismutase: An Enzymic Function for Erythrocuprein,” Journal Inorganic and Biochemestry, Vol. 244, 1969, pp. 6049-6055.
[58] G. Siegel and M. Stitt, “Partial Purification of Two Forms of Spinach Leaf Sucrosephosphate Synthase Which Differ in Their Kinetic Properties,” Plant Science, Vol. 66, No. 2, 1990, pp. 205-210. doi:10.1016/0168-9452(90)90205-3
[59] L. Van Quy, T. Lamaze and M. L. Champigny, “Effect of Light and NO3– on Wheat Leaf Phosphoenolpyruvate Carboxylase Activity. Evidence for Covalent Modulation of the C3 Enzyme,” Physiologia Plantarum, Vol. 97, No. 4, 1991, pp. 1476-1482. doi:10.1104/pp.97.4.1476
[60] M. Kantardzic, “Data Mining: Concepts, Models, Methods, and Algorithms”, Wiley, New York, 2003.
[61] A. Price, J. Cairns, P. Horton, H. G. Jones and H. Griffiths, “Linking Drought-Resistance Mechanisms to Drought Avoidance in Upland Rice Using a QTL Approach: Progress and New Opportunities to Integrate Stomatal and Mesophyll Responses,” Journal Experimental Botany, Vol. 53, No. 371, 2002, pp. 989-1004. doi:10.1093/jexbot/53.371.989
[62] F. García-Sánchez, J. P. Syvertsen, V. Gimeno, P. Botía and J. G. Perez-Perez, “Responses to Flooding and Drought Stress by Two Citrus Rootstock Seedlings with Different Water-Use Efficiency,” Physiologia Plantarum, Vol. 130, No. 4, 2007, pp. 532-542. doi:10.1111/j.1399-3054.2007.00925.x
[63] L. Qing-Ming, L. Bin-Bin, W. Yang and Z. Zhi-Rong, “Interactive Effects of Drought Stresses and Elevated CO2 Concentration on Photochemistry Efficiency of Cucumber Seedlings,” Journal of Integrative Plant Biology, Vol. 50, No. 10, 2008, pp. 1307-1317. doi:10.1111/j.1744-7909.2008.00686.x
[64] J. Chen, R. J. Henny, P. S. Devanand and C. T. Chao “AFLP Analysis of Nephthytis (Syngonium podophyllum Schott) Selected from Somaclonal Variants,” Plant Cell Report, Vol. 24, No. 12, 2006, pp. 743-749. doi:10.1007/s00299-005-0032-2
[65] M. J. Prado, M. V. González, S. Romo and M. T. Herrera, “Ad?ventitious Plant Regeneration on Leaf Explants from Adult Male Kiwifruit and AFLP Analysis of Genetic Variation,” Plant Cell Tissue Organ Culture, Vol. 88, No. 1, 2007, pp. 1-10. doi:10.1007/s11240-006-9116-0
[66] S. M. Jain, “Tissue Culture-Derived Variation in Crop Improvement,” Euphytica, Vol. 118, No. 2, 2001, pp. 153-166. doi:10.1023/A:1004124519479
[67] R. Li, R. Qu, A. H. Bruneau and D. P. Livingston, “Selection for Freezing Tolerance in St. Augustinegrass through Somaclonal Variation and Germplasm Evaluation,” Plant Breeding, Vol. 129, 2010, pp. 417-421.
[68] P. T. H. Brown, F. D. Lange, E. Kranz and H. Lorz, “Analysis of Single Protoplasts and Regenerated Plants by PCR and RAPD Technology,” Molecular and General Genetics, Vol. 237, No. 3, 1993, pp. 311-317.
[69] P. Bhatia, N. Ashwath, T. Senaratna and S. Krauss, “Genetic Analysis of Cotyledon-Derived Regenerants of Tomato Using AFLP Markers,” Current Science, Vol. 88, 2005, pp. 280-284.
[70] K. R. Kerns, “Concerning the Growth of Pollen Tubes in Pistils of Cayenne Flowers,” Pineapple Quarterly, Vol. 1, 1932, pp. 133-137.
[71] S. K. Majumder, K. R. Kerns, J. L. Brewbaker and G. A. Johansmessen, “Assessing Self-Incompatibility by a Pollen Fluorescence Technique,” Proceedings of the American Society for Horticultural Science, Vol. 84, 1964, pp. 217-223.
[72] J. L. Brewbaker and D. D. Gorrez, “Genetics of Self-Incompatibility in the Monocot Genera, Ananas (Pineapple) and Gasteria,” American Journal of Botany, Vol. 54, No. 5, 1967, pp. 611-616. doi:10.2307/2440666
[73] G. Coppens d’Eekenbrugge, M. F. Duval and F. Van Miegroet, “Fertility and Self-Incompatibility in the Genus Ananas, ” Acta Horticulturae, Vol. 334, 1993, pp. 45-51.
[74] S. A Flint-Garcia, J. M. Thornsberry and E. S. Buckler, “Structure of Linkage Disequilibrium in Plants,” Annual Review Plant Biology, Vol. 54, 2003, pp. 357-374.

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.