Share This Article:

Electrophysiological correlates of cognitive inhibition in college students with schizotypal traits

Abstract Full-Text HTML Download Download as PDF (Size:475KB) PP. 68-76
DOI: 10.4236/ojpsych.2012.21010    3,921 Downloads   6,998 Views   Citations

ABSTRACT

Objective: We investigated cognitive inhibition in non-clinical individuals with schizotypal traits using event-related potentials. Methods: College students with psychometrically defined schizotypal traits (n = 16) and normal controls (n = 15) participated. The computerized Stroop task with three types of stimuli, i.e., congruent, incongruent, and neutral words, was used to measure cognitive inhibition. Results: The schizotypal-trait group committed significantly more errors in response to incongruent words than did the control group. The control group showed frontal negativity (FN) of significantly greater amplitude in response to incongruent than to congruent and neutral stimuli, whereas the schizotypal-trait group showed no significant difference in FN amplitude between incongruent and congruent/neutral stimuli at 300 - 400 ms poststimulus. A source localization analysis conducted in different waveforms for incongruent minus congruent conditions at 300-400 ms poststimulus showed reduced activation in the left cingulate cortex and in the middle/medial prefrontal cortex in the schizotypal-trait group compared with the control group. The two groups did not differ in the sustained potential amplitudes observed at 550-650 ms after stimulus-onset at parietal sites. Conclusions: These results suggest that individuals with schizotypal traits have difficulties in conflict detection and cognitive inhibition, possibly mediated by the cingulate cortex and prefrontal cortex.

Conflicts of Interest

The authors declare no conflicts of interest.

Cite this paper

Kim, M. , Oh, S. , Jang, K. , Che, H. and Im, C. (2012) Electrophysiological correlates of cognitive inhibition in college students with schizotypal traits. Open Journal of Psychiatry, 2, 68-76. doi: 10.4236/ojpsych.2012.21010.

References

[1] Besnier, N., Richard, F., Zendjidjian, X., Kalsdjian, A., Mazzola-Pomietto, P., Adida, M. and Azorin, J.M. (2009) Stroop and emotional Stroop interference in unaffected relative of patients with schizophrenic and bipolar disorders: Distinct markers of vulnerability? World Journal of Biological Psychiatry, 10, 809-818. doi:10.1080/15622970903131589
[2] Zalla, T., Joyce, C., Szoke, A., Schurhoff, F., Pillon, B., Komano, O., Perez-Diaz, F., Bellivier, F., Alter, C., Dubois, B., Rouillon, F., Houde, O. and Leboyer, M. (2004) Executive dysfunctions as potential markers of familial vulnerability to bipolar disorder and schizophrenia. Psychiatry Research, 121, 207-217. doi:10.1016/S0165-1781(03)00252-X
[3] Stroop, J. R. (1935) Studies of interference in serial verbal reaction. Journal of Experimental Psychology, 18, 643-662. doi:10.1037/h0054651
[4] MacLeod, C.M. (1991) Half a century of research on the Stroop effect: An integrative review. Psychological Bulletin, 109, 163-203. doi:10.1037//0033-2909.109.2.163
[5] Carter, C.S., Robertson, L.C. and Nordahl, T.E. (1992) Abnormal processing of irrelevant information in chronic schizophrenia: selective enhancement of Stroop facilitation. Psychiatry Research, 41, 137-146. doi:10.1016/0165-1781(92)90105-C
[6] Buchanan, R.W., Strauss, M.E., Kirkpatrick, B., Holstein, C., Breier, A. and Carpenter, W.T.J. (1994) Neuropsychological impairments in deficit vs. nondeficit forms of schizophrenia. Archives of General Psychiatry, 51, 804-811.
[7] Carter, C.S., Mintun, M., Nichols, T. and Cohen, J.D. (1997) Anterior cingulate gyrus dysfunction and selective attention deficits in schizophrenia: [15O] H2O PET study during single-trial Stroop task performance. American Journal of Psychiatry, 154, 1670-1675.
[8] Chen, E.Y.H., Wong, A.W.S., Chen, R.Y.L. and Au, J.W.Y. (2001) Stroop interference and facilitation effects in first-episode schizophrenic patients. Schizophrenia Research, 48, 29-44. doi:10.1016/S0920-9964(00)00107-9
[9] Barch, D.M., Carter, C.S., Perlstein, W., Baird, J., Cohen, J.D. and Schooler, N. (1999) Increased Stroop facilitation effects in schizophrenia are not due to increased automatic spreading activation. Schizophrenia Research, 39, 51-64. doi:10.1016/S0920-9964(99)00025-0
[10] Kerns, J.G., Cohen, J.D., MacDonald, A.W., Cho, R.Y., Stenger, V.A. and Carter, C.S. (2004) Anterior cingulate conflict monitoring and adjustments in control. Science, 303, 1023-1026. doi:10.1126/science.1089910
[11] Leung, H.C., Skudlarski, P., Gatenby, J.C., Peterson, B. and Gore, J.C. (2000) An event-related functional MRI study of the Stroop color words interference task. Cerebral Cortex, 10, 552-560. doi:10.1093/cercor/10.6.552
[12] Ungar, L., Nestor, P.G., Niznikiewicz, M.A., Wible, C.G. and Kubicki, M. (2010) Color Stroop and negative priming in schizophrenia: An fMRI study. Psychiatry Research: Neuroimaging, 181, 24-29. doi:10.1016/j.pscychresns.2009.07.005
[13] Leon-Carrion, J., Damas-Lopez, J., Martin-Rodriguez, J.F., Dominguez-Roldan, J.M., Murillo-Cabezas, F., Barroso-Y-Martin, J.M. and Dominguez-Morales, M.R. (2008) The hemodynamics of cognitive control: The level of concentration of oxygenated hemoglobin in the superior prefrontal cortex varies as a function of performance in a modified Stroop task. Behavioural Brain Research, 193, 248-256.
[14] Schroeter, M.L., Zysset, S., Kupka, T., Kruggel, F. and Yves von Cramon, D. (2002) Near-infrared spectroscopy can detect brain activity during a color-word matching Stroop task in an event-related design. Human Brain Mapping, 17, 61-71. doi:10.1002/hbm.10052
[15] Melcher, T., Falkai, P. and Gruber, O. (2008) Functional brain abnormalities in psychiatric disorders: neural mechanisms to detect and resolve cognitive conflict and interference. Brain Research Review, 59, 96-124 doi:10.1016/j.brainresrev.2008.06.003
[16] Nordahl, T.E., Carter, C.S., Salo, R.E., Kraft, L., Baldo, J., Salamat, S., Robertson, L. and Kusubov, N. (2001) Anterior cingulate metabolism correlates with Stroop errors in paranoid schizophrenia patients. Neuropsychopharmacology, 25, 139-148. doi:10.1016/S0893-133X(00)00239-6
[17] Yucel, M., Pantelis, C., Stuart, G.W., Wood, S.J., Maruff, P., Velakoulis, D., Pipingas, A., Crowe, S.F., Tochon-Danguy, H.J. and Egan, G.F. (2002) Anterior cingulate activation during Stroop task performance: A PET to MRI coregistration study of individual patients with schizophrenia. American Journal of Psychiatry, 159, 251-254. doi:10.1176/appi.ajp.159.2.251
[18] Takei, K., Yamasue, H., Abe, O., Yamada, H., Inoue, H., Suga, M., Muroi, M., Sasaki, H., Aoki, S. and Kasai, K. (2009) Structural disruption of the dorsal cingulum bundle is associated with impaired Stroop performance in patients with schizophrenia. Schizophrenia Research, 114, 119-127. doi:10.1016/j.schres.2009.05.012
[19] Liotti, M., Woldorff, M.G., Perez III, R. and Mayberg, H.S. (2000) An ERP study of the temporal course of the Stroop color-word interference effect. Neuropsychologia, 38, 701-711. doi:10.1016/S0028-3932(99)00106-2
[20] Hanslmayr, S., Pastotter, B., Bauml, K.H., Gruber, S., Wimber, M. and Klimesch W. (2008) The electrophysiological dynamics of interference during the Stroop task. Journal of Cognitive Neuroscience, 20, 215-224. doi:10.1162/jocn.2008.20.2.215
[21] West, R. and Alain, C. (2000) Effects of task context and fluctuation of attention on neural activity supporting performance of the Stroop task. Brain Research, 873, 102-111. doi:10.1016/S0006-8993(00)02530-0
[22] Markela-Lerenc, J., Schmidt-Kraepelin, C., Roesch-Ely, D., Mundt, C., Weisbrod, M. and Kaiser, S. (2009) Stroop interference effect in schizophrenic patients: An electrophysiological approach. International Journal of Psychophysiology, 71, 248-257. doi:10.1016/j.ijpsycho.2008.10.005
[23] McNeely, H.E., Christensen, B.K., West, R. and Alain, C. (2003) Changes in neurophysiological correlates of conflict processing precede behavioral disturbance in patients with schizophrenia. Journal of Abnormal Psychology, 112, 679-688.
[24] Badzakova-Trajkov, G., Barnett, K.J., Waldie, K.E. and Kirk, I.J. (2009) An ERP investigation of the Stroop task: The role of the cingulate in attentional allocation and conflict resolution. Brain Research, 1253, 139-148. doi:10.1016/j.brainres.2008.11.069
[25] West, R. (2003) Neural correlates of cognitive control and conflict detection in the Stroop and digit-location tasks. Neuropsychologica, 41, 1122-1135. doi:10.1016/S0028-3932(02)00297-X
[26] Markela-Lerenc, J., Ille, N., Kaiser, S., Fiedler, P., Mundt, C. and Weisbrod, M. (2004). Prefrontal-cingulate activation during executive control: which comes first? Cognitive Brain Research, 18, 278-287. doi:10.1016/j.cogbrainres.2003.10.013
[27] West, R., Bowry, R. and McConville, C. (2004) Sensitivity of medial frontal cortex to response and nonresponse conflict. Psychophysiology, 41, 739-748. doi:10.1111/j.1469-8986.2004.00205.x
[28] West, R., Perry, M., Moore, K., Jakubek, K. and Wymbs, N. (2005) Neural correlates of conflict processing. Experimental Brain Research, 873, 38-48. doi:10.1007/s00221-005-2366-y
[29] Pascual-Marqui, R.D., Michel, C.M. and Lehmann D. (1994) Low resolution electromagnetic tomography: A new method for localization electrical activity in the brain. International Journal of Psychophysiology, 18, 49-65. doi:10.1016/0167-8760(84)90014-X
[30] Cuffin, B.N. (1998) EEG dipole source localization. Engineering in Medicine & Biology Magazine, IEEE, 17, 118-122. doi:10.1109/51.715495
[31] Siever, L.J. and Davis, K.L. (2004) The pathophysiology of schizophrenia disorders: Perspectives from spectrum. American Journal of Psychiatry, 161, 398-413. doi:10.1176/appi.ajp.161.3.398
[32] Lin, H.F., Liu, Y.L., Liu, C.M., Hung, S.I., Hwu, H.G. and Chen W.J. (2005) Neuregulin I gene and variations in perceptual aberration of schizotypal personality in adolescents. Psychological Medicine, 35, 1589-1598. doi:10.1017/S0033291705005957
[33] Moorhead, T.W.J., Stanfield, A., Spencer, M., Hall, J., McIntosh, A., Qwnes, D.C., Lawrie, S. and Johnstone, E. (2009) Progressive temporal lobe gray matter loss in adolescents with schizotypal traits and mild intellectual impairment. Psychiatry Research: Neuroimaging, 174, 105-109. doi:10.1016/j.pscychresns.2009.04.003
[34] Noguchi, H., Hori, H. and Kunugi, H. (2008) Schizotypal traits and cognitive function in healthy adults. Psychiatry Research, 161, 162-169. doi:10.1016/j.psychres.2007.07.023
[35] Cadenhead, K.S., Perry, W., Shafer, K. and Braff, D.L. (1999) Cognitive function in schizotypal personality disorder. Schizophrenia Research, 37, 123-132. doi:10.1016/S0920-9964(98)00147-9
[36] Orem, D.M. and Bedwell, J.S. (2010) A preliminary investigation on the relationship between color-word Stroop task performance and delusion-proneness in nonpsychiatric adults. Psychiatry Research, 175, 27-32. doi:10.1016/j.psychres.2008.09.001
[37] Kaplan, O. and Lubow, R.E. (2011) Ignoring irrelevant stimuli in latent inhibition and Stroop paradigm: The effects of schizotypy and gender. Psychiatry Research, 186, 40-45. doi:10.1016/j.psychres.2010.07.025
[38] Moon, H.O., Yang, I.H., Lee, H.P., Kim, M.E. and Ham, W. (1997) The preliminary study on the validation of schizotypal personality questionnaire-Korean version. Journal of Korean Neuropsychiatry Association, 36, 329-343.
[39] Raine, A. (1992) The SPQ: A scale for the assessment of schizotypal personality based on DSN-III-R criteria. Schizophrenia Bulletin, 17, 555-564.
[40] First, M.B., Spitzer, R.L., Gibbson, M. and Williams, J.B.W. (1996) Structured Clinical Interview for DSM-IV Axis I Disorder. New York State Psychiatric Institute, New York.
[41] Tucker, D.M. (1993) Spatial sampling of head electrical fields: The geodesic sensor net. Electroencephalography and Clinical Neurophysiology, 87, 154-163. doi:10.1016/0013-4694(93)90121-B
[42] Dien, J. (1998) Issues in the application of the average reference: Review, critiques, and recommendations. Behavior Research Methods, Instruments, & Computers, 30, 34-43. doi:10.3758/BF03209414
[43] Pascual-Marqui, R.D. (2002) Standardized low-resolution brain electromagnetic tomography (sLORETA). Experimental and Clinical Pharmacology, 24, 5-12.
[44] Park, H.J., Kwon, J.S., Youn, T., Pae, J.S., Kim, J.J., Kim, M.S. and Ha, K.S. (2002) Statistical parametric mapping of LORETA using high density EEG and individual MRI: Application to mismatch negativities in schizophrenia. Human Brain Mapping, 17, 168-178. doi:10.1002/hbm.10059
[45] Barch, D.M., Carter, C.S. and Cohen, J.D. (2004) Factors influencing Stroop performance in schizophrenia. Neuropsychology, 18, 477-484. doi:10.1037/0894-4105.18.3.477
[46] Henik, A. and Salo, R. (2004) Schizophrenia and the Stroop effect. Behavior and Cognitive Neuroscience Review, 3, 42-59. doi:10.1177/1534582304263252
[47] Hepp, H.H., Maier, S., Hermle, L. and Spitzer, M. (1996) The Stroop effect in schizophrenic patients. Schizophrenia Research, 22, 187-195. doi:10.1016/S0920-9964(96)00080-1
[48] West, R. and Alain, C. (1999) Event-related neural activity associated with the Stroop task. Cognitive Brain Research, 8, 157-164. doi:10.1016/S0926-6410(99)00017-8
[49] Carter, C.S., Robertson, L.C., Nordahl, T.E., O’Shora-Celaya, L.J. and Chaderjian, M.C. (1993) Abnormal processing of irrelevant information in schizophrenia: The role of illness subtype. Psychiatry Research, 48, 17-26. doi:10.1016/0165-1781(93)90109-T
[50] Albanese, A.M., Merlo, A.B., Mascitti, T.A., Tornese, E.B., Gomez, E.E., Konopka, V. and Albanese, E.F. (1995) Inversion of the hemispheric laterality of the anterior cingulate gyrus in schizophrenics. Biological Psychiatry, 38, 13-21. doi:10.1016/0006-3223(94)00257-4
[51] Pantelis, C., Yucel, M., Wood, S.J., McGorry, P. and Velakoulis, P. (2001) The timing and functional consequences of structural brain abnormalities in schizophrenia. Neuroscience News, 4, 36-46.
[52] Takahashi, T., Suzuki, M., Kawasaki, Y., Kurokawa, K., Hagino, H., Yamashita, I., Zhou, S.Y., Nohara, S., Nakamura, K., Seto, H. and Kurachi, M. (2002) Volumetric magnetic resonance imaging study of the anterior cingulate gyrus in schizotypal disorder. European Archives of Psychiatry and Clinical Neurosciences, 252, 268-277. doi:10.1007/s00406-002-0392-3

  
comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.