Investigation of Negative Refraction Phenomenon for Au Nanowires Array Tuning with Index of Filling Material
Ximei Hong, Yongqi Fu, Ligong Zheng, Weixing Yu
DOI: 10.4236/jmp.2011.212176   PDF   HTML     3,849 Downloads   8,065 Views   Citations


Negative refraction performance of Au nanowires arrays-based metamaterials was explored by means of finite difference and time domain (FDTD) algorithm for the purpose of providing flexible design freedom of the negative index metamaterials (NIMs) working in visible regime from nanofabrication point of view. Tuning performance of the nanowires for negative refraction was analyzed by use of varying refractive index of filling materials among the metallic nanowires. Computational numerical simulation and analyses were carried out. The performance of negative refraction was compared by optimization of the structures. By optimizing the nanowires radius, E-field intensity was calculated in the case that the refractive index of filling material is changeable. The calculated refraction angles illustrate a relationship between the refraction angle and the index of filling material. Our computational results demonstrate that effective value of the negative refractive index strongly depends on the refractive index of the filling material when other parameters are fixed.

Share and Cite:

X. Hong, Y. Fu, L. Zheng and W. Yu, "Investigation of Negative Refraction Phenomenon for Au Nanowires Array Tuning with Index of Filling Material," Journal of Modern Physics, Vol. 2 No. 12, 2011, pp. 1429-1435. doi: 10.4236/jmp.2011.212176.

Conflicts of Interest

The authors declare no conflicts of interest.


[1] V. G. Veselago, “The Electrodynamics of Substances with Simultaneously Negative Values of Epsilon and mu,” Soviet Physics Uspekhi, Vol. 10, No. 4, 1968, pp. 509-514. doi:10.1070/PU1968v010n04ABEH003699
[2] R. A. Shelby, D. R. Smith and S. Schultz, “Experimental Verification of a Negative Index of Refraction,” Science Vol. 292, No. 5514, 2001, pp. 77-79. doi:10.1126/science.1058847
[3] P. A. Belov and C. R. Simovski, “Canalization of Subwavelength Images by Electromagnetic Crystals,” Physical Review B, Vol. 71, No. 19, 2005, pp. 193105-193109. doi:10.1103/PhysRevB.71.193105
[4] P. A. Belov, Y. Hao and S. Sudhakaran, “Subwavelength Microwave Imaging Suing an Array of Parallel Conducting Wires as a Lens,” Physical Review B, Vol. 73, No. 3, 2006, pp. 033108-033112. doi:10.1103/PhysRevB.73.033108
[5] L. I. Mandelshtam, “Lectures on Some Problems of the Theory of Oscillations,” Complete Collection of Works, Vol. 5, Academy of Sciences, Moscow, 1944, pp. 428- 467.
[6] G. D. Malyuzhinets, “A Note on the Radiation Principle,” Soviet Physics—Technical Physics, Vol. 21, 1951, pp. 940-942.
[7] M. Notomi, “Theory of Light Propagation in Strongly Modulated Photonic Crystals: Refractionlike Behavior in the Vicinity of the Photonic Band Gap,” Physical Review B, Vol. 62, No. 16, 2000, pp. 10696-10705. doi:10.1103/PhysRevB.62.10696
[8] D. R. Smith, W. Padilla, D. C. Vier, S. C. Nemat-Nasser and S. Schultz, “Composite Medium with Simultaneously Negative Permeability and Permittivity,” Physical Review Letters, Vol. 84, No. 18, 2000, pp. 4184-4187. doi:10.1103/PhysRevLett.84.4184
[9] C. Luo, S. G. Johnson, J. D. Joannopoulos and J. B. Pendry, “Subwavelength Imaging in Photonic Crystals,” Phy- sical Review B, Vol. 65, No. 20, 2002, pp. 201104- 201108. doi:10.1103/PhysRevB.65.201104
[10] J. B. Pendry, A. J. Holden, D. J. Robbins and W. J. Stewart,” Low Frequency Plasmons in Thin Line Structures,” Journal of Physics: Condensed Matter, Vol. 10, No. 22, 1998, pp. 4785-4788. doi:10.1088/0953-8984/10/22/007
[11] G. V. Eleftheriades and A. K. Iyer, “Planar Negative Refractive Index Media Using Periodically L–C Loaded Transmission Lines,” IEEE Transactions on Microwave Theory and Techniques, Vol. 50, No. 12, 2002, pp. 2702- 2712. doi:10.1109/TMTT.2002.805197
[12] A. Grbic and G. V. Eleftheriades, “Growing Evanescent Waves in Negative-Refractive-Index Transmission-Line Media,” Applied Physics Letters, Vol. 82, No. 12, 2003, pp. 1815-1818. doi:10.1063/1.1561167
[13] A. Grbic and G. V. Eleftheriades, “Practical Limitations of Subwavelength Resolution Using Negative-Refrac- tive-in-Dex Transmission-Line Lenses,” IEEE Transac- tions on Antennas and Propagation, Vol. 53, No. 10, 2005, pp. 3201-3209. doi:10.1109/TAP.2005.856316
[14] D. R. Simth, W. J. Padilla and D. C. Vier, “A Composite Medium with Simultaneously Negative Permeability and Permittivity,” Physical Review Letters, Vol. 84, No. 18, 2000, pp. 4184-4187. doi:10.1103/PhysRevLett.84.4184
[15] A. M. Belyantsev and A. B. Kozyrev, “Reversed Doppler Effect under Reflection from a Shock Electromagnetic Wave,” Technical Physics, Vol. 47, No. 11, 2002, pp. 1477. doi:10.1134/1.1522123
[16] J. Yao, Z. W. Liu, Y. M. Liu, Y. Wang, C. Sun, G. Bartal, A. M. Stacy and X. Zhang, “Optical Negative Refraction in Bulk Metamaterials of Nanowires,” Science, Vol. 321, No. 5891, 2008, p. 930. doi:10.1126/science.1157566
[17] M. G. Silveirinha, P. A. Belov and C. R. Simovski, “Sub- wavelength Imaging at Infrared Frequencies Using an Array of Metallic Nanorods,” Physical Review B, Vol. 75, No. 3, 2007, pp. 035108-035120. doi:10.1103/PhysRevB.75.035108
[18] M. G. Silveirinha, “Nonlocal homogenization model for a periodic array of ε-negative rods”, Physical Review E, Vol. 73, No. 4, 2006, pp. 046612-046620. doi:10.1103/PhysRevE.73.046612
[19] A. Ono, J. I. Kato and S. Kawata, “Subwavelength Optical Imaging through a Metallic Nanorod Array,” Physical Review Letters, Vol. 95, No. 26, 2005, pp. 267407- 267411. doi:10.1103/PhysRevLett.95.267407
[20] FDTD Solution, Professional Commercial Software from Lumerical Solution Inc.
[21] Yongqi Fu Edt. E-book, Subwavelength Optics: Theory and Technology. Published by Bentham Sciences, in 2009 in USE, Chapter 12. See website URL below:

Copyright © 2021 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.