Similarity of Rayleigh-Taylor Instability Development on Scales from 1 mm to One Light Year
Michael C. Kelley, Eugene Dao, Carolyn Kuranz, Hans Stenbaek-Nielsen
.
DOI: 10.4236/ijaa.2011.14022   PDF    HTML     4,359 Downloads   8,251 Views   Citations

Abstract

In this paper, we describe three different phenomena occurring on scales of 1 mm, 100 km, and almost a light year. The smallest scale is a laboratory experiment. The intermediate scale is a rocket-borne space experiment and the largest is an exploding star. In each case, deceleration creates a situation that is unstable to the Rayleigh-Taylor instability. The similarity exists in the spatial and in the Fourier domains; that is, not only are there obvious spatial similarities but the power spectra of the two phenomena are also nearly identical. The data compare favorably to published simulations.

Share and Cite:

M. Kelley, E. Dao, C. Kuranz and H. Stenbaek-Nielsen, "Similarity of Rayleigh-Taylor Instability Development on Scales from 1 mm to One Light Year," International Journal of Astronomy and Astrophysics, Vol. 1 No. 4, 2011, pp. 173-176. doi: 10.4236/ijaa.2011.14022.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] “Gas Ring around Super Nova 1987A,” online image, 2 February 2000, cited July 2008. http://hubblesite.org/gallery/album/entire_collection/pr2000011b/
[2] B. Fryxell, E. Muller and D. Arnett, “Instabilities and Clumping in SN 1987A. I - Early Evolution in Two Dimensions,” The Astrophysical Journal, Vol. 367, 1991, pp. 619-634. doi:10.1086/169657
[3] E. Muller, B. Fryxell and D. Arnett, “Instability and Clum- ping in SN 1987A,” The Astrophysical Journal, Vol. 251, 1991, pp. 505-514.
[4] E. M. Wescott, H. C. Stenbaek-Nielsen, T. Hallinan, C. Dee- hr, J. Romich, J. Olson, M. C. Kelley, R. Pfaff, R. B. Tor- bert, P. Newell, H. Foppl, J. Fedder and H. Mitchell, “Plasma-Depleted Holes, Waves, and Energized Particles from High-Altitude Explosive Plasma Perturbation Experiments,” Journal of Geophysical Research, Vol. 90, No. A5, 1985, pp. 4281-4298. doi:10.1029/JA090iA05p04281
[5] D. D. Ryutov, R. P. Drake, J. Kane, E. Liang, B. A. Re- mington and M. Wood-Vasey, “Similarity Criteria for the Laboratory Simulation of Supernova Hydrodynamics,” The Astrophysical Journal, Vol. 518, No. 2, 1999, pp. 821-832. doi:10.1086/307293
[6] J. Kane, D. Arnett, B. A. Remington, S. G. Glendinning, G. Bazan, R. P. Drake, B. A. Fryxell, R. Teyssier and K. Moore, “Scaling Supernova Hydrodynamics to the Laboratory,” Physics of Plasmas, Vol. 6, No. 5, 1999, pp. 2065- 2072. doi:10.1063/1.873497
[7] R. P. Drake, “Laboratory Experiments to Simulate the Hydrodynamics of Supernova Remnants and Supernovae,” Journal of Geophysical Research, Vol. 104, No. A7, 1999, pp. 14505-14515. doi:10.1029/98JA02829
[8] C. C. Kuranz, R. P. Drake, D. R. Leibrandt, E. C. Harding, H. F. Robey, A. R. Miles, B. E. Blue, J. F. Hansen, H. Louis, M. Bono, J. Knauer, D. Arnett and C. A. Meakin, “Progress toward the Study of Laboratory Scale, Astrophysically Relevant, Turbulent Plasmas,” Astrophysics and Space Science, Vol. 298, No. 1-2, 2005, pp. 9-16. doi:10.1007/s10509-005-3906-4
[9] L. Rayleigh, “Scientific Papers,” Vol. II, Cambridge University Press, Cambridge, 1900.
[10] G. I. Taylor, “The Instability of Liquid Surfaces When Accelerated in a Direction Perpendicular to Their Planes,” Proceedings of the Royal Society of London, Vol. A201, No. 1065, 1950, pp. 192-196.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.