Realization of the Linear Tree that Corresponds to a Fundamental Loop Matrix

.
DOI: 10.4236/wsn.2010.21004   PDF   HTML     5,298 Downloads   8,799 Views   Citations

Abstract

Graph realization from a matrix is an important topic in network topology. This paper presents an algorithm for the realization of a linear tree based on the study of the properties of the number of the single-link loops that are incident to each tree branch in the fundamental loop matrix Bf. The proposed method judges the pendent properties of the tree branches, determines their order one by one and then achieves the realization of the linear tree. The graph that corresponds to Bf is eventually constructed by adding links to the obtained linear tree. The proposed method can be extended for the realization of a general tree.

Share and Cite:

J. QIAN and P. WOO, "Realization of the Linear Tree that Corresponds to a Fundamental Loop Matrix," Wireless Sensor Network, Vol. 2 No. 1, 2010, pp. 31-36. doi: 10.4236/wsn.2010.21004.

Conflicts of Interest

The authors declare no conflicts of interest.

References

[1] L. Q. Lei and B. Q. Dai, “A convenient method for formulation of a node incidence matrix from a basic cutset matrix,” (In Chinese), Journal of Jiangxi Polytechnic University, Vol. 14, No. 3, September 1992.
[2] W. Mayeda, “Graph theory,” John Wiley, New York, 1972.
[3] K. P. Rajappan, “On Okada’s method for realizing cutset matrices,” Journal of Combinational Theory, Vol. 10, pp. 135–142, 1971.
[4] M. N. S. Swamy and K. Thulasiraman, “Graph, network and algorithms,” John Wiley, New York, 1981.
[5] L. Zhu, “An expression for the relationship between the incidence Matrix A of Graph G and the basic loop Matrix Bf,” (In Chinese), Teaching and Scientific Technology, No. 1, pp. 72–75, March 1996.
[6] R. B. Ash and W. H. Kim, “On realizability of a circuit matrix,” IRE Transactions on Circuit Theory, Vol. CT-6, pp. 219–223, June 1959.
[7] S. R. Parker and H. J. Lohse, “A direct procedure for the synthesis of network graphs from a given fundamental loop or cutset matrix,” IEEE Transactions on Circuit Theory, Vol. CT-16, pp. 221–223, May 1969.

  
comments powered by Disqus

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.