Engineering
Volume 6, Issue 3 (March 2014)
ISSN Print: 1947-3931 ISSN Online: 1947-394X
Google-based Impact Factor: 1.09 Citations
Finite Element Method Applied to the Eigenvalue Analysis of Flexible Rotors Supported by Journal Bearings ()
Affiliation(s)
ABSTRACT
This work deals with a finite element procedure developed to perform the eigenvalue analysis of damped gyroscopic systems, represented by flexible rotors supported on fluid film journal bearings. The rotor finite element model is based on the Timoshenko beam theory, accounting for the shaft rotary inertia and gyroscopic moments. The governing equations for the hydrodynamic journal bearing are obtained through the Galerkin weighted residual method applied to the classical Reynolds equation. A perturbation scheme on the fluid film governing equation permits to obtain the zero-th and first order lubrication equations for the bearings, which allow the computation of the dynamic force coefficients associated with the bearing stiffness and damping. The rotor-bearing system equation, which consists of a case of damped gyroscopic equation, is rewritten on state form to compute the complex eigenvalues. The natural frequencies at several operating conditions are obtained and compared to the technical literature data. The influence of the effective damping on the eigenvalue real part sign is analyzed for some examples of rotor-bearing systems, showing how the stability conditions can be predicted by the eigenvalue analysis. The procedure implemented in this work can provide useful guidelines and technical data about the selection of the more appropriate set of bearing parameters for rotating machines operating at stringent conditions.
KEYWORDS
Share and Cite:
Cited by
Copyright © 2024 by authors and Scientific Research Publishing Inc.
This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.