Impact of drifts in edge plasma of small size divertor tokamak ()
ABSTRACT
The effect of poloidal E × B and diamagnetic drifts in edge plasma of Small Size Divertor (SSD) Tokamak is studied with two-dimensional B2SO- LPS-0.5.2D fluid transport code. The simulation results show the following: 1) For normal toroidal magnetic field, the increasing of core plasma density leads to large divertor asymmetries due to poloidal E × B and diamagnetic drifts. 2) Switching on the E × B and diamagnetic drifts leads to large change in poloidal distribution of radial electric field and induced counter-clockwise circulation (flow) around the x-point. 3) Switching on the E × B and diamagnetic drifts leads to the structure of poloidal distribution of radial electric field is nonmonotonic which responsible for negative spikes. 4) Switching on the E × B and diamagnetic drifts in vicinity of separatrix leads to the structure of poloidal distribution of radial electric field that has viscous layer. 5) Switching on the E × B and diamagnetic drifts results in torque generation. This torque spins up the toroidal rotation. 6) The E × B drift velocity depends on the plasma temperature heating and doesn't depend on plasma density.
Share and Cite:
Bekheit, A. (2012) Impact of drifts in edge plasma of small size divertor tokamak.
Natural Science,
4, 131-135. doi:
10.4236/ns.2012.42019.
Cited by
No relevant information.