International Journal of Geosciences

Volume 11, Issue 8 (August 2020)

ISSN Print: 2156-8359   ISSN Online: 2156-8367

Google-based Impact Factor: 1.03  Citations  

New model for dispersion of volcanic ash and dust in the troposphere

HTML  XML Download Download as PDF (Size: 826KB)  PP. 544-561  
DOI: 10.4236/ijg.2020.118029    489 Downloads   1,310 Views  Citations
Author(s)

ABSTRACT

Dispersion of volcanic ash and dust is traditionally modeled as advection and Gaussian diffusion. This is the tradition in treating smoke stack plumes. About 100 meters above earth the velocity profile may disintegrate, diffusion coefficients become rather unpredictable and stratified flow occur. It is suggested that gravitational flattening may be the main cause of dispersion in dust plumes above the turbulent boundary layer. A dust plume in between two layers of small temperature difference has a certain carrying capacity of dust. The corresponding mass loading can be estimated from the temperature difference between the layers above and beneath the plume. Such dust plumes will be forced to jettison a load they may have in excess of this carrying capacity; this may be seen as streak fallout from the plume. In the same time, the plume will be subjected to gravitational flattening to the sides, in addition to any diffusion if there is any. The plume width resulting from the flattening may be estimated from the temperature difference. This can explain the behavior of plumes like the plume from the Eyjafjallaj?kull 2010 in absence of diffusion. In the long run diffusion and gravitational flattening will cause different developments of the plume width. Gravitational flattening and streak fallouts are important elements from plume physics not included in most plume models. It is concluded that modelling dust plumes with diffusion and ordinary fallout only; can cause serious errors in the model, the simulated plumes will become too big. To avoid them, the new model should be included in dust models in the same manner as the turbulent diffusion, i.e. as a sub grid model. Then, the plume model only needs to include horizontal turbulent diffusion of the same order of magnitude as the vertical one.

Share and Cite:

Eliasson, J. (2020) New model for dispersion of volcanic ash and dust in the troposphere. International Journal of Geosciences, 11, 544-561. doi: 10.4236/ijg.2020.118029.

Cited by

[1] Sediment Transport Modeling in the Pasig River, Philippines Post Taal Volcano Eruption
Geosciences, 2024
[2] Experimental study of dust emission intensity from the surface of the alluvium beach
… Series: Earth and …, 2024
[3] Numerical modeling of the wind regime on the beaches of the wash of the artificial storage facilities for mineral processing waste
… Series: Earth and …, 2024
[4] Prediction of atmospheric air pollution near a coal stack in adverse weather conditions
… Series: Earth and …, 2023
[5] Numerical analysis of aerodynamic regime near tailings storage facility
… Series: Earth and …, 2023
[6] Characteristics of particulate matter during New Year's eve fireworks and Taal volcano ashfall in Metro Manila on January 2020
Urban Climate, 2023
[7] Field and experimental characterisation of tephra sedimentation and resuspension processes

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.