Journal of Intelligent Learning Systems and Applications

Volume 11, Issue 4 (November 2019)

ISSN Print: 2150-8402   ISSN Online: 2150-8410

Google-based Impact Factor: 4.31  Citations  h5-index & Ranking

On the Matrices of Pairwise Frequencies of Categorical Attributes for Objects Classification

HTML  XML Download Download as PDF (Size: 730KB)  PP. 65-75  
DOI: 10.4236/jilsa.2019.114004    241 Downloads   376 Views  
Author(s)

ABSTRACT

This paper proposes two new algorithms for classifying objects with categorical attributes. These algorithms are derived from the assumption that the attributes of different object classes have different probability distributions. One algorithm classifies objects based on the distribution of the attribute frequencies, and the other classifies objects based on the distribution of the pairwise attribute frequencies described using a matrix of pairwise frequencies. Both algorithms are based on the method of invariants, which offers the simplest dependencies for estimating the probabilities of objects in each class by an average frequency of their attributes. The estimated object class corresponds to the maximum probability. This method reflects the sensory process models of animals and is aimed at recognizing an object class by searching for a prototype in information accumulated in the brain. Because these matrices may be sparse, the solution cannot be determined for some objects. For these objects, an analog of the k-nearest neighbors method is provided in which for each attribute value, the class to which the majority of the k-nearest objects in the training sample belong is determined, and the most likely class value is calculated. The efficiencies of these two algorithms were confirmed on five databases.

Cite this paper

Shats, V. (2019) On the Matrices of Pairwise Frequencies of Categorical Attributes for Objects Classification. Journal of Intelligent Learning Systems and Applications, 11, 65-75. doi: 10.4236/jilsa.2019.114004.

Cited by

No relevant information.

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.