Journal of High Energy Physics, Gravitation and Cosmology

Volume 5, Issue 3 (July 2019)

ISSN Print: 2380-4327   ISSN Online: 2380-4335

Google-based Impact Factor: 0.57  Citations  

Does a Restricted Quintic Polynomial in Minimum Time Step (Planck Time Interval) Being Solvable in a Galois Theory Sense Affect the Closing of a Wormhole Throat if (Kaluza Klein Theory) Is Assumed and Impact Admissible Gravitational Wave Polarization?

HTML  XML Download Download as PDF (Size: 667KB)  PP. 683-710  
DOI: 10.4236/jhepgc.2019.53037    375 Downloads   647 Views  

ABSTRACT

In a prior paper, the d = 1 to d = 7 sense of AdS/CFT solutions were described in general whereas we did not introduce commentary as to GW polarization of gravitational radiation from a worm hole. We will discuss GW polarization, for d = 1 and in addition say concrete facts as to the strength of the GW radiation, and admissible frequencies. First off, the term Δt is for the smallest unit of time step. Note that in the small Δt limit for d = 1 we avoid any imaginary time no matter what the sign of Ttemp is. And when d = 1 in order to have any solvability one would need X = Δt assumed to be infinitesimal. To first approximation, we set X = Δt as being of Planck time, 10-31 or so seconds, in duration.

Share and Cite:

Beckwith, A. (2019) Does a Restricted Quintic Polynomial in Minimum Time Step (Planck Time Interval) Being Solvable in a Galois Theory Sense Affect the Closing of a Wormhole Throat if (Kaluza Klein Theory) Is Assumed and Impact Admissible Gravitational Wave Polarization?. Journal of High Energy Physics, Gravitation and Cosmology, 5, 683-710. doi: 10.4236/jhepgc.2019.53037.

Cited by

No relevant information.

Copyright © 2021 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.