Open Journal of Ecology

Volume 8, Issue 6 (June 2018)

ISSN Print: 2162-1985   ISSN Online: 2162-1993

Google-based Impact Factor: 0.97  Citations  h5-index & Ranking

Affiliation of Dihydrolipoyl Dehydrogenase Allozymes in Mycorrhizae of European Forest Trees and Characterization of the Enzyme of the Matt Bolete (Xerocomus pruinatus) and the Bay Bolete (X. badius)

HTML  XML Download Download as PDF (Size: 9762KB)  PP. 356-377  
DOI: 10.4236/oje.2018.86022    380 Downloads   708 Views  

ABSTRACT

Mycorrhizal roots of the deciduous trees European beech (Fagus sylvatica (L.)) and Sessile oak (Quercus petraea (MattuschkaLiebl.)) and the conifers Norway spruce (Picea abies (L.) H. Karst.) and European larch (Larix decidua (Mill.)) associated with the ectomycorrhizal fungi matt bolete (Xerocomus pruinatus (Fries 1835)) or bay bolete (X. badius (Fries 1818)) were analysed with respect to the occurrence of dihydrolipoyl dehydrogenase (EC 1.8.1.4) allozymes. In root tissues of the two deciduous trees, two gene loci could be visualized after cellulose acetate electrophoresis while three loci were expressed in root tissues of the two coniferous species. The two fungal species and further ectomycorrhizal fungi expressed exclusively one dihydrolipoyl dehydrogenase gene. In Xerocomus pruinatus and X. badius, the dihydrolipoyl dehydrogenase gene consists of 1460 bp and 1370 bp, respectively, including five introns each consisting of 52 bp. Their DNA sequences correspond to 70 to 90% to other fungal dihydrolipoyl dehydrogenase genes. One monomer of the dimeric dihydrolipoyl dehydrogenase enzyme consists of 486 (X. pruinatus) or 454 (X. badius) amino acids which sum up to a molecular mass of 55 kDa (X. pruinatus), respectively 52 kDa (X. badius). The number of positively charged amino acid residues makes 79 (X. pruinatus) and 68 (X. badius) and the number of negatively charged amino acid residues was calculated to make 46 (X. pruinatus) and 48 (X. badius); isoelectric points make 9.99 (X. pruinatus) and 9.68 (X. badius). Calculated three dimensional structures reveal a short NADH binding site being part of a larger FAD-binding site and a binding/dimerization domain.

Cite this paper

Schirkonyer, U. and Rothe, G. (2018) Affiliation of Dihydrolipoyl Dehydrogenase Allozymes in Mycorrhizae of European Forest Trees and Characterization of the Enzyme of the Matt Bolete (Xerocomus pruinatus) and the Bay Bolete (X. badius). Open Journal of Ecology, 8, 356-377. doi: 10.4236/oje.2018.86022.

Cited by

No relevant information.

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.