Open Journal of Discrete Mathematics

Volume 8, Issue 2 (April 2018)

ISSN Print: 2161-7635   ISSN Online: 2161-7643

Google-based Impact Factor: 0.48  Citations  

Revisiting a Tiling Hierarchy (II)

HTML  XML Download Download as PDF (Size: 1105KB)  PP. 48-63  
DOI: 10.4236/ojdm.2018.82005    715 Downloads   1,720 Views  Citations


In a recent paper, we revisited Golomb’s hierarchy for tiling capabilities of finite sets of polyominoes. We considered the case when only translations are allowed for the tiles. In this classification, for several levels in Golomb’s hierarchy, more types appear. We showed that there is no general relationship among tiling capabilities for types corresponding to same level. Then we found the relationships from Golomb’s hierarchy that remain valid in this setup and found those that fail. As a consequence we discovered two alternative tiling hierarchies. The goal of this note is to study the validity of all implications in these new tiling hierarchies if one replaces the simply connected regions by deficient ones. We show that almost all of them fail. If one refines the hierarchy for tile sets that tile rectangles and for deficient regions then most of the implications of tiling capabilities can be recovered.

Share and Cite:

Nitica, V. (2018) Revisiting a Tiling Hierarchy (II). Open Journal of Discrete Mathematics, 8, 48-63. doi: 10.4236/ojdm.2018.82005.

Copyright © 2023 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.