Circuits and Systems

Volume 7, Issue 10 (August 2016)

ISSN Print: 2153-1285   ISSN Online: 2153-1293

Google-based Impact Factor: 0.91  Citations  h5-index & Ranking

Correlation Associative Rule Induction Algorithm Using ACO

HTML  XML Download Download as PDF (Size: 441KB)  PP. 2857-2864  
DOI: 10.4236/cs.2016.710244    1,679 Downloads   2,146 Views   Citations


Classification and association rule mining are used to take decisions based on relationships between attributes and help decision makers to take correct decisions at right time. Associative classification first generates class based association rules and use that generate rule set which is used to predict the class label for unseen data. The large data sets may have many null-transac- tions. A null-transaction is a transaction that does not contain any of the itemsets being examined. It is important to consider the null invariance property when selecting appropriate interesting measures in the correlation analysis. Real time data set has mixed attributes. Analyze the mixed attribute data set is not easy. Hence, the proposed work uses cosine measure to avoid the influence of null transactions during rule generation. It employs mixed-kernel probability density function (PDF) to handle continuous attributes during data analysis. It has ably to handle both nominal and continuous attributes and generates mixed attribute rule set. To explore the search space efficiently it applies Ant Colony Optimization (ACO). The public data sets are used to analyze the performance of the algorithm. The results illustrate that the support-confidence framework with a correlation measure generates more accurate simple rule set and discover more interesting rules.

Cite this paper

Nalini, C. (2016) Correlation Associative Rule Induction Algorithm Using ACO. Circuits and Systems, 7, 2857-2864. doi: 10.4236/cs.2016.710244.

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.