International Journal of Astronomy and Astrophysics

Volume 6, Issue 2 (June 2016)

ISSN Print: 2161-4717   ISSN Online: 2161-4725

Google-based Impact Factor: 0.78  Citations  h5-index & Ranking

Kinematic Decoupled Core Paradigm: Counterrotation or Just Warping

HTML  XML Download Download as PDF (Size: 1108KB)  PP. 198-205  
DOI: 10.4236/ijaa.2016.62016    1,954 Downloads   2,614 Views  Citations

ABSTRACT

Several mechanisms have been proposed in recent years to explain kinematic decoupled cores (KDCs) in early type galaxies as well as the large differences in angular momentum between KDCs and host galaxy. Most of the proposed scenarios involve large fractions of merging events, high speed interactions with dwarf spheroidal galaxies, cusp effect of the dark matter density profiles, etc. We here argue that counterrotation as well as fast and slow rotation of disks or spheroids at the center of galaxies can also be explained by a misalignment of the central spheroid equatorial plane with regard to that defined by the observed external stellar rotation. Contrary to what happens at the outer region of disk galaxies, once instability has led to the inner warped core, the perturbed orbits can maintain a common orientation due to the rigid body like rotation at the central region of the galaxy. The spatial configuration that furnishes the smallest angular momentum difference between the KDC and the host galaxy is completely defined by observed parameters in the plane of the sky, namely, the inclination of the inner and outer disks and the angle between the two lines of nodes. As an example we modeled the paradigmatic and extreme case of the 2D radial velocity field of NGC 4382 nucleus. Tilt angles of the KDC not larger than 30 degrees also allow explaining fast and low rotators of the called “Sauron paradigm” in a unified scenario. The maximum for the three parameters, namely, velocity of the inner rotator, difference of position angle and difference with the outer rotation velocity of the whole Sauron sample, are consistently correlated in agreement with the proposed scenario. These quantities do not correlate with the galaxies magnitude, mass (since large and dwarf spheroidals show apparent counterrotation as well) or environment, also suggesting that an internal phenomenon like the central spheroid warping, that we are here proposing, may be at work.

Share and Cite:

Díaz, R. and Dottori, H. (2016) Kinematic Decoupled Core Paradigm: Counterrotation or Just Warping. International Journal of Astronomy and Astrophysics, 6, 198-205. doi: 10.4236/ijaa.2016.62016.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.