Applied Mathematics

Volume 5, Issue 3 (February 2014)

ISSN Print: 2152-7385   ISSN Online: 2152-7393

Google-based Impact Factor: 0.58  Citations  

Increasing Ventilation by Passive Strategies: Analysis of Indoor Air Circulation Changes through the Utilization of Microclimate Elements

HTML  Download Download as PDF (Size: 2645KB)  PP. 442-452  
DOI: 10.4236/am.2014.53044    4,247 Downloads   5,994 Views  Citations

ABSTRACT

A demand for renewable alternatives that would be able to deal with the problems related to well-being is directly linked to the world’s growing needs to save energy and reduce environmental costs. For a project implementation addressing these issues, it is essential to know the climatic conditions of the target area. Taking natural ventilation, climatic factors, and renewable alternatives as important sources of comfort, in this work, passive strategies, through the utilization of microclimate elements as well as the location of outside obstacles, were imposed on an initial and specific project. The objective was to introduce obstacles which could interfere in the field of external wind and evaluate whether this outside intervention is able to make changes in indoor air circulation. The wind fields for the studied cases were obtained by computational simulations, and their consequences were analyzed to attain thermal comfort. The method adopted to obtain the wind fields was a Petrov-Galerkin type method, which is a stabilized mixed finite element method of the Navier-Stokes equations considering the incompressibility and formulated in primitive variables, velocity and pressure. The obtained results point to the solutions that promote the increase or decrease of the wind-field intensity.

Share and Cite:

P. Drach and J. Karam-Filho, "Increasing Ventilation by Passive Strategies: Analysis of Indoor Air Circulation Changes through the Utilization of Microclimate Elements," Applied Mathematics, Vol. 5 No. 3, 2014, pp. 442-452. doi: 10.4236/am.2014.53044.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.