Open Journal of Endocrine and Metabolic Diseases

Volume 3, Issue 3 (July 2013)

ISSN Print: 2165-7424   ISSN Online: 2165-7432

Google-based Impact Factor: 0.3  Citations  

Mitochondrial Signaling in Hypoxia

HTML  XML Download Download as PDF (Size: 637KB)  PP. 213-225  
DOI: 10.4236/ojemd.2013.33029    3,772 Downloads   6,477 Views  Citations
Author(s)

ABSTRACT

This paper focuses on a bioenergetic mechanism responding to hypoxia. This response involves hypoxia-induced reprogramming of respiratory chain function and switching from oxidation of complex I (NAD-related substrates) to complex II (succinate oxidation). Transient, reversible, compensatory activation of respiratory chain complex II is a major mechanism of urgent adaptation to hypoxia, which is necessary for 1) succinate-related energy synthesis in the conditions of oxygen shortage and formation of urgent resistance; 2) succinate-related stabilization of HIF-1α and initiation of its transcriptional activity related with formation of long-term adaptation; 3) succinate-dependent activation of the succinate-specific receptor GPR91. Thus, mitochondria perform a signaling function with succinate as a signaling molecule. Effects of succinate in hypoxia occur at three levels, intramitochondrial, intracellular and intercellular. In these settings, succinate displays antihypoxic activitie. The review is focused on tactics and strategy for development of the antihypoxic defense and antihypoxants with energotropic properties.

Share and Cite:

L. Lukyanova, "Mitochondrial Signaling in Hypoxia," Open Journal of Endocrine and Metabolic Diseases, Vol. 3 No. 3, 2013, pp. 213-225. doi: 10.4236/ojemd.2013.33029.

Cited by

[1] Transport of Ca2+ and Ca2+-Dependent Permeability Transition in the Liver and Heart Mitochondria of Rats with Different Tolerance to Acute Hypoxia
2020
[2] Hypoxia Inducible Factor 1α as Key Factor in Wound Healing Post Tooth Extraction: an Overview
2020
[3] Differences in tolerance to hypoxia: physiological, biochemical, and molecular-biological characteristics
2020
[4] Succinate as a mobilization cue.
2020
[5] Transport of Ca2+ and Ca2+-Dependent Permeability Transition in the Liver and Heart Mitochondria of Rats with Different Tolerance to Acute Hypoxia.
2020
[6] Сигнальные механизмы гипоксии
2019
[7] ПОТЕНЦИРОВАНИЕ АНТИГИПОКСАНТАМИ ЭФФЕКТА ГИПОКСИЧЕСКОГО ПРЕКОНДИЦИОНИРОВАНИЯ
2019
[8] Effect of hypoxia on mitochondrial enzymes and ultrastructure in the brain cortex of rats with different tolerance to oxygen shortage
2019
[9] The Role of Succinate in the Regulation of Intestinal Inflammation
2019
[10] Dynamic Restructuring of the Myocardial Mitochondria in Response to Uridine Modulation of the Activity of Mitochondrial ATP-Dependent Potassium Channel under …
2019
[11] Potentiation of the hypoxic preconditioning effect by antihypoxants
2019
[12] Implementación de un modelo in vitro de cáncer que permita evaluar simultáneamente el efecto de estrés (hipoxia y pH) y el silenciamiento de genes.
2018
[13] Структурно-динамические перестройки в митохондриях миокарда при модуляции уридином активности митохондриального АТФ-зависимого калиевого …
2018
[14] Fermentation Conditions and Media Optimization for Isocitric Acid Production from Ethanol by Yarrowia lipolytica
BioMed Research International, 2018
[15] Amplification of mitochondrial activity in the healing response following rotator cuff tendon injury
2018
[16] Μελέτη και ταυτοποίηση διαφορετικών μεταβολομικών προφίλ σε ζωικά μοντέλα καρδιακής ανακοπής λόγω ασφυξίας ή λόγω κοιλιακής μαρμαρυγής
2018
[17] Pro-/antioxidant reactions and nitrogen oxide metabolism under sub-chronic effect of succinic acid derivatives
The Ukrainian Biochemical Journal, 2017
[18] Metabolomics profiling reveals different patterns in an animal model of asphyxial and dysrhythmic cardiac arrest
Scientific Reports, 2017
[19] Advances in multimodal monitoring in critically ill patients16Monitoring the metabolic statusand energy requirements incritical patients
2017
[20] Disruption of functional activity of mitochondria during MTT assay of viability of cultured neurons
Biochemistry (Moscow), 2017
[21] НАРУШЕНИЕ ФУНКЦИОНАЛЬНОЙ АКТИВНОСТИ МИТОХОНДРИЙ ПРИ МТТ-АНАЛИЗЕ ВЫЖИВАЕМОСТИ КУЛЬТИВИРУЕМЫХ НЕЙРОНОВ
2017
[22] Short ischemia induces rat kidney mitochondria dysfunction
Journal of bioenergetics and biomembranes, 2016
[23] Bilobalide safeguards 3T3-L1 adipocytes from hypoxia through protecting mitochondrial bioenergetics, biogenesis and dynamics
RSC Advances, 2016
[24] Mitochondrial function in rat cerebral cortex and hippocampus after short-and long-term hypobaric hypoxia
Brain research, 2015
[25] Hypoxia Inducible Factor Pathway and Physiological Adaptation: A Cell Survival Pathway?
Mediators of Inflammation, 2015
[26] Differential effects of buffer pH on Ca2+-induced ROS emission with inhibited mitochondrial complexes I and III
Frontiers in physiology, 2015
[27] Mitochondrial function in skeletal muscle of patients with protracted critical illness and ICU-acquired weakness
Critical Care, 2015
[28] Brazilian Pampa Biome Honey Protects Against Mortality, Locomotor Deficits and Oxidative Stress Induced by Hypoxia/Reperfusion in Adult Drosophila melanogaster
Neurochemical research, 2015
[29] Mitochondrial bioenergetics: An integrated platform to study interactions of multiple stressors
2015
[30] Undersökning av den kognitiva förmågan vid arbete i syrereducerad miljö vid Forsmarks kärnkraftverk
2013
[31] Сукцинат как сигнал мобилизации
Е Маевский, А Васильева, М Кожурин

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.