Materials Sciences and Applications

Volume 4, Issue 4 (April 2013)

ISSN Print: 2153-117X   ISSN Online: 2153-1188

Google-based Impact Factor: 1.62  Citations  h5-index & Ranking

Removal of Aqueous Lead and Copper Ions by Using Natural Hydroxyapatite Powder and Sulphide Precipitation in Cyanidation Process

HTML  XML Download Download as PDF (Size: 1365KB)  PP. 231-237  
DOI: 10.4236/msa.2013.44028    5,132 Downloads   7,406 Views   Citations


Mining, ore processing, and smelting activities have contaminated soil and water resources with cyanide and heavy metals throughout the world. In-situ chemical immobilization is a remediation technology that decreases the concentrations of dissolved ions of copper cyanide and lead hydroxides by adsorption or precipitation. This study deals, with a process to recover lead hydroxides with natural hydroxyapatite powder and copper cyanide ions with sulphide precipitation from solutions of the cyanidation process. This technology is based on inducing nucleated precipitation of copper and silver in a serpentine reactor, using sodium sulfide as the precipitator, and sulfuric acid for pH control. Results show that pH value has a significant effect on copper cyanide removal efficiency, and it was determined the optimal pH range to be 2.5 - 3. At this pH value, the copper cyanide removal efficiency achieved was up to 99% with 60 percent of copper purity and the cyanide ions associated with this complex the recovery was 90%. For the elimination of lead hydroxides ions from the aqueous cyanidation process with natural hydroxiapatite powder the recovery was 99%. The abundance of cow bones, its low price and non-aggressive nature towards the environment are advantages for its utilization in point of view of wastewater cleanup and Dore with higher quality.

Cite this paper

J. Parga, J. Valenzuela, V. Vazquez, M. Rodriguez and H. Moreno, "Removal of Aqueous Lead and Copper Ions by Using Natural Hydroxyapatite Powder and Sulphide Precipitation in Cyanidation Process," Materials Sciences and Applications, Vol. 4 No. 4, 2013, pp. 231-237. doi: 10.4236/msa.2013.44028.

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.