International Journal of Astronomy and Astrophysics

Volume 2, Issue 4 (December 2012)

ISSN Print: 2161-4717   ISSN Online: 2161-4725

Google-based Impact Factor: 1.23  Citations  h5-index & Ranking

Third-Order Corrections and Mass-Shedding Limit of Rotating Neutron Stars Computed By a Complex-Plane Strategy

HTML  Download Download as PDF (Size: 282KB)  PP. 210-217  
DOI: 10.4236/ijaa.2012.24027    3,820 Downloads   6,019 Views  Citations


We implement the so-called “complex-plane strategy” for computing general-relativistic polytropic models of uniformly rotating neutron stars. This method manages the problem by performing all numerical integrations, required within the framework of Hartle’s perturbation method, in the complex plane. We give emphasis on computing corrections up to third order in the angular velocity, and the mass-shedding limit. We also compute the angular momentum, moment of inertia, rotational kinetic energy, and gravitational potential energy of the models considered.

Share and Cite:

I. Sfaelos and V. Geroyannis, "Third-Order Corrections and Mass-Shedding Limit of Rotating Neutron Stars Computed By a Complex-Plane Strategy," International Journal of Astronomy and Astrophysics, Vol. 2 No. 4, 2012, pp. 210-217. doi: 10.4236/ijaa.2012.24027.

Cited by

[1] Υπολογιστική σχετικιστική μελέτη των αστέρων νετρονίων με γενίκευση της μεθόδου των μετανευτωνείων προσεγγίσεων
[2] Υπολογιστική διαπραγμάτευση των ταλαντώσεων και των κυμάτων βαρύτητας σε αστέρες νετρονίων
[3] Computing rotating polytropic models in the post-Newtonian approximation: The problem revisited
New Astronomy, 2014
[4] Critical rotation of general-relativistic polytropic models simulating neutron stars: a post-Newtonian hybrid approximative scheme
arXiv preprint arXiv:1410.0041, 2014
[5] Quasi-radial modes of pulsating neutron stars: numerical results for general-relativistic rigidly rotating polytropic models
arXiv preprint arXiv:1406.3318, 2014

Copyright © 2021 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.