Advances in Biological Chemistry

Volume 2, Issue 4 (November 2012)

ISSN Print: 2162-2183   ISSN Online: 2162-2191

Google-based Impact Factor: 0.5  Citations  

Purification, characterization, and bioinformatics studies of phosphatidic acid phosphohydrolase from Lagenaria siceraria

HTML  Download Download as PDF (Size: 523KB)  PP. 403-410  
DOI: 10.4236/abc.2012.24050    3,410 Downloads   6,530 Views  Citations

ABSTRACT

Phosphatidic acid phosphohydrolase (PAP), EC 3.1.3.4, is the penultimate step in the Kennedy pathway of triacyl glycerol (TAG) synthesis leading to the formation of diacylglycerol (DAG), which is a key intermediate in TAG synthesis. We partially purified a soluble PAP from mid maturing seeds of bottle gourd, Lagenaria siceraria. The steps include both anionic and cationic ion exchanger columns. Catalytic characterization of the partially purified PAP revealed that the optimum pH and temperature for activity were at 5.5?C and 45?C. Under optimum assay condition using dioleoyl phosphatidic acid (DPA) as the substrate, the Vmax and Km were 0.36 ηkat/mg of protein and 200 μM, respectively. For the synthetic substrate, ρ-nitrophenylphosphate, ρ-NPP, the Vmax and Km were 33.0 nkat/mg of protein and 140 μM, respectively. The activity was neither inhibited nor enhanced by the presence of Mg2+ at a concentration range of 0 to 10 mM. Two major protein bands at 42-kDa and 27-kDa were visible in SDS-PAGE after partial purification. Bioinformatics analysis of tryp-sinized protein fractions containing PAP activity showed peptide sequences with sequence homology to various phosphate metabolizing enzymes including cucumber and castor bean purple acid phosphatase, polyphosphate kinase, fructose biphosphate aldolase, and enolase from various dicotyledonous plants including rice, corn, grape, and Arabidopsis lyrata.

Share and Cite:

Ullah, A. , Sethumadhavan, K. , Grimm, C. and Shockey, J. (2012) Purification, characterization, and bioinformatics studies of phosphatidic acid phosphohydrolase from Lagenaria siceraria. Advances in Biological Chemistry, 2, 403-410. doi: 10.4236/abc.2012.24050.

Copyright © 2024 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.