Advances in Pure Mathematics

Volume 2, Issue 5 (September 2012)

ISSN Print: 2160-0368   ISSN Online: 2160-0384

Google-based Impact Factor: 0.48  Citations  h5-index & Ranking

On the Infinite Products of Matrices

HTML  XML Download Download as PDF (Size: 156KB)  PP. 349-353  
DOI: 10.4236/apm.2012.25050    3,605 Downloads   6,803 Views  


In different fields in space researches, Scientists are in need to deal with the product of matrices. In this paper, we develop conditions under which a product Пi=0 of matrices chosen from a possibly infinite set of matrices M={Pj, j∈J} converges. There exists a vector norm such that all matrices in M are no expansive with respect to this norm and also a subsequence {ik}k=0 of the sequence of nonnegative integers such that the corresponding sequence of operators {Pik}k=0 converges to an operator which is paracontracting with respect to this norm. The continuity of the limit of the product of matrices as a function of the sequences {ik}k=0 is deduced. The results are applied to the convergence of inner-outer iteration schemes for solving singular consistent linear systems of equations, where the outer splitting is regular and the inner splitting is weak regular.

Share and Cite:

Y. Hanna and S. Ragheb, "On the Infinite Products of Matrices," Advances in Pure Mathematics, Vol. 2 No. 5, 2012, pp. 349-353. doi: 10.4236/apm.2012.25050.

Cited by

No relevant information.

Copyright © 2021 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.