Materials Sciences and Applications

Volume 11, Issue 12 (December 2020)

ISSN Print: 2153-117X   ISSN Online: 2153-1188

Google-based Impact Factor: 1.67  Citations  h5-index & Ranking

Numerical Evaluation of the Surface Energy of Polyhedral Nanoparticles

HTML  XML Download Download as PDF (Size: 4157KB)  PP. 837-850  
DOI: 10.4236/msa.2020.1112055    106 Downloads   227 Views  


Nanoparticles have been used widely in various fields, and their size and shape greatly affect the functional properties. Therefore, controlling the morphology of the particles is important, and evaluation of the surface energy is indispensable for that purpose. In this study, the surface energy of nanoparticles was evaluated by numerical simulation and formulated in a polynomial equation. First, molecular dynamics simulations were carried out for variously shaped polyhedral nanoparticles. A cube and an octahedron were introduced as reference shapes, and truncated hexahedrons and truncated octahedrons were created by cutting out their vertices. The surface energy was plotted for various polyhedrons. The lowest energy was observed in an octahedron because of the stability of the (111) plane, and the highest energy was observed in a cube because of the relatively higher energy of the (100) plane. Then, the surface energy was formulated in a polynomial equation, in which the parameters obtained by the molecular-dynamics simulations were introduced. As a result, stability of the octahedron and relative instability of the cube were fairly captured by the proposed polynomial equation, while a slight underestimation was inevitable. Finally, the parameters were revised to continuous numbers to extend the application range. Consequently, an application for various materials, such as a cube having equivalent stability to an octahedron, was demonstrated by imposing rather exaggerated parameters.

Cite this paper

Uehara, T. and Fujiwara, J. (2020) Numerical Evaluation of the Surface Energy of Polyhedral Nanoparticles. Materials Sciences and Applications, 11, 837-850. doi: 10.4236/msa.2020.1112055.

Cited by

No relevant information.

Copyright © 2020 by authors and Scientific Research Publishing Inc.

Creative Commons License

This work and the related PDF file are licensed under a Creative Commons Attribution 4.0 International License.