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Abstract

We revisit, advancing a useful approximation, a recently formulated QFT
treatment that successfully overcomes any troubles with infinities for
non-renormalizable QFTs [J. Phys. Comm. 2 115029 (2018)]. Such metho-
dology was able to successfully deal, in non-relativistic fashion, with New-
ton’s gravitation potential [Annals of Physics 412, 168013 (2020)]. Our
present approximation to the QFT method of [J. Phys. Comm. 2 115029
(2018)] is based on the Einstein’s Lagrangian (EG) elaborated by Gupta [1],
save for a different constraint’s selection. This choice allows one to avoid the
lack of unitarity for the § matrix that impaired the proceedings of Gupta and
Feynman. Moreover, we are able to simplify the handling of such constraint
by eliminating the need to involve ghosts for guarantying unitarity. Our ap-

proximation consists in setting the graviton field ¢"" =y""¢, where y*" Is
a constant tensor and ¢ a scalar (graviton) field. The ensuing approximate

approach is non-renormalizable, an inconvenience that we are able to over-
come in [J. Phys. Comm. 2 115029 (2018)].

Keywords

Quantum Field Theory, Einstein Gravity, Non-Renormalizable Theories,
Unitarity

1. Introduction

Quantifying Einstein gravity (EG) remains an open problem. We can speak of

the Holy Grail for quantum field theory (QFT). Many preceding attempts in this
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vein failed because 1) they use Rigged Hilber Space (RHS) with undefined me-
tric, 2) non-unitarity troubles, and iii) non-renormalizablity problems.

We will construct here a unitary EG’s QFT based on efforts by Gupta [1], but
deviate from his path by appealing to a distinct EG-constraint. This technical
detail poses a problem analogous to that of Quantum Electrodynamics (QED).
To quantize the associated non-renormalizable variational problem, we employ
mathematical tools developed by Bollini e al [2] [3] [4] [5] [6] in the wake of
Ultra distributions introduced by J. S. Silva (JSS) [7], also called Ultrahyperfunc-
tions. The above cited mathematical apparatus was specifically devised so as to
quantify non-renormalizable field theories, for a detailed discussion see [2] [3]
[4] [5] [6]. One ends up facing a theory similar to QED, endowed with unitarity
at all finite orders in power expansions in the gravitation constant G of the EG
Lagrangian. This was previously attempted, but without success, by Gupta and
by Feynman (in his celebrated Acta Physica Polonica paper [8]).

Rather surprisingly for some contemporary physicists, for a mathematician,
quantifying a non-renormalizable field theory is equivalent to properly defining
a product of two distributions (a product in a ring with zero-divisors in confi-
guration space). This is an old problem in functional theory, successfully tackled
in [2] [3] [4] [5] [6].

Remember that, in QFT, evaluating products of distributions with coincident
point singularities is connected to the asymptotic behavior of loop integrals of
propagators.

In [2] [3] [4] [5] the authors showed the feasibility of defining a general con-
volution between the ultrahyperfunctions of JSS [7]. This convolution produces
another ultrahyperfunction. Thus, one has a product in a ring with zero divisors,
a ring that is the space of distributions of exponential type, or ultradistributions
of exponential type. We get them applying the anti-Fourier transform to the
space of tempered ultra distributions or ultra distributions of exponential type.

The ultrahyperfunctions are just the generalization and extension to the com-
plex plane of the Schwartz tempered distributions and the distributions of expo-
nential type. Thus, the tempered distributions and those of exponential type are
a subset of the ultrahyprefunctions.

The present work we do not employ counter-terms to eliminate infinities,
since our convolutions remain always finite. One should not wish for coun-
ter-terms, since a non-renormalizable theory involves an infinite number of
them.

Simultaneously, we keep all extant solutions to the problem of running
coupling constants and the renormalization group. Our convolution, once
available, transforms configuration space into a ring with zero-divisors. In such
ring, we have defined now a product between the ring-elements. Accordingly,
any unitary-causal-Lorentz invariant theory quantified in such way becomes
predictive. One does no need now to distinguish between renormalizable on
non-renormalizable QFT’s.

Our convolution uses Laurent’s expansions in the parameter employed to de-
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fine it. All finite constants of the convolutions become determined, eliminating
arbitrary selections of finite constants. This is equivalent to deleting all finite re-
normalizations of the theory. The independent term in the Laurent expansion
yields the convolution value, which translates to configuration space the prod-
uct-operation in a ring with divisors of zero.

Our paper is structured as indicated belows:

1) Section 2 deals with preliminary materials.

2) Section 3 treats the QFT Lagrangian for EG and introduces a new approxi-

Hv uv

mation that consists in setting the graviton field ¢*" = y*"¢, where »*" is a
constant tensor and ¢ a scalar (graviton) field.

3) Section 4 quantizes the ensuing theory.

4) Section 5 evaluates the graviton’s self-energy up to second order.

5) Section 6 introduces axions into our scenario and considers the axions gra-
vitons interaction.

6) Section 7 calculates the graviton’s self-energy in the presence of axions.

7) Section 8 evaluates the axion’s self-energy, up to second order.

8) Finally, some conclusions are drawn in Section 9.

2. Preliminary Materials

The most general quantification approach is Schwinger-Feynman’s variational
principle [9]. It is able to deal even with high order supersymmetric theories, as
done by [10] [11]. These theories cannot be quantized by appeal to the custo-
mary Dirac-brackets approach.

Consider now the action for a set of fields written in the fashion
o(x)
S[0(x),00.8,(X) = [ L] :(£).0,44(£).&]de, (2.1)
9

where o(X) if a space-like surface passing through the point x. o, is that
surface (at the remote past), for which all field variations vanish. The Schwing-
er-Feynman variational principle asserts that

“Any Hermitian infinitesimal variation 68 of the action induces a canonical
transformation of the vector space in which the quantum system is defined, and
the generator of this transformation is this same operator S ”.

Thus, this equality holds:

¢, =1[68,4,]. (2.2)
Accordingly, for a Poincare transformation one has
1
08 =a"P, + Ea“va, (2.3)
where the field variation is
- 1 e
og, =a“P, g, + Ea‘VM/N¢A. (2.4)

From (2) one ascertains that
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0,80 = i[lpﬂl%J- (2.5)
More to the point,
0o = i[POv¢A]- (2.6)

Eq. (ep2.6) will be used below for quantizing EG.

3. The Lagrangian of Einstein’s QFT

The EG Lagrangian is [1]

1 1
EG :?R\/m_gnyvaahﬂaaﬂhv,gl (31)

where Minkowski’s 7" =diag (l,l,l,—l) while h*" = Mg’“’ The second
term in (3.1) establishes the gauge fixing. We reach here a critical stage by pro-
ceeding to perform a crucial linear approximation. This will be immediately seen

to be an approximation to the graviton field. We write:
h* =n" + k¢, (3.2)

where x? is the gravitation’s constant and ¢*’ the graviton field. Our ap-

proximation based in [12] reads

¢ =y"4, (33)
with ¢ ascalar field and where »*' is a constant tensor which satisfies
7, =0 (3.4)

This approximate casting of ¢*' considerably simplifies the handling of
matters without sacrifice of rigor. We write now the Lagrangian as a sum of a

non-perturbative component plus an interactions one, e,
Lo=L +L, (3.5)

where
1 v A
L = — 3wl " 0:40°¢, (3.6)
and, up to 2nd order, one has [1]

1 vl 1l >
L=t ¢[5W”*a,,¢av¢+y,,,jma%ﬂqﬁ—y,,,,m ama%ﬁ} (3.7)

having made use of the constraint (3.4) This constraint is required in order to
satisfy gauge invariance [13] For the field ¢ we have then, as can also be seen
to happen in [6],

Cg =0, (3.8)

whose solution is

p(x)=— f{a(k) o a+(k)e‘kﬂxﬂ}d3k, (3.9)

(Zn)g \/m \/m

with k, =|k|. Above, a(k) and a’(k) stand for Fourier coefficients. Up to

this point we were using Einstein’s Lagrangian. Its quantization begins next.
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4. The Quantization of the Theory

As usual in QFT, see for instance Visconti’ celebrated book [9], the quantum

/"
energy-momentum tensor T, is castas

oL

A A v 2
TP - aap¢yv a ¢.“ _5p£l (41)
and the time-component of the four-momentum is now the quantum operator
B, = [T3d’. (4.2)
Using (3.4) we have
1 v i
T == 7" [ 0°9 - 0,909 (4.3)
Consequently,
1 W + +
R=37u? [IK[a(k)a" (k) +a* (k)a(k)]d%. (4.4)

Appeal to (2.6) leads now to
[ R (k) |=ka" (k). (4.5)
From the last relation in (4.5) one gathers that

|k|a*(k')=“VTwﬂk[a(k),a*(k’)]a*(k)dSk. (4.6)

The solution of this integral equation is
+ ’ 2 ’
[a(k).a" (k') ]|=—=5(k-K). (4.7)
Y
We use now the the usual definition

A=) = (O[T [6()6()]0) 9

The graviton’s propagator then turns out to be

i 2 et 4
A(x-y)= (27:)4 ?’w?’m'( 10 d*k. (4.9)
As a consequence, we can write
B, = “Vy Ll [|k|[a(k)a* (k') +a (K)a(k)]5(k - k)d%dk’,  (4.10)

or

P - 7#” P 22 (<)) ’jplé(k—k') 5(k—K)dkd,'. (4.11)

pA

Thus, we obtain
B = y*’“y T [|ka” (k)a(k)d% (4.12)

where we have used the fact that the product of two deltas with the same argu-
ment vanishes [2], e, &(k—k')d(k—k')=0. This illustrates the fact that us-
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ing Ultrahyperfunctions is here equivalent to adopting the normal order in the

definition of the time-component of the four-momentum
yny
790:%“H:[a(k)a*(k)+a*(k)a(k)]:d3k. (4.13)
Now, we must insist on the fact that the physical state should satisfy the rela-
tion (see [1])

70, 4lw)=0. (4.14)
The ensuing theory is similar to the QED-one obtained via the quantization ap-
proach of Gupta-Bleuler. This implies that the theory is unitary for any finite
perturbative order. In this theory just one type of graviton arises, ¢, while in

Gupta’s treatment two sorts of graviton emerge. Of course, this happens for a

non-interacting theory, as pointed out by Gupta.

5. Graviton’s Self Energy

So as to compute the graviton’s self-energy (SF)c we begin with the interaction

Hamiltonian 7, .Remark that the Lagrangian has derivative interaction terms.

oL, y
H, = 66°¢I‘” ¢ - L,. (5.1)
A typical term reads
Zenpase (K) =Kok, (P —10) 7%k, K, (p—i0)", (5.2)

where p =k +kZ+kZ—kZ

In v dimensions, the Fourier transform of (2) becomes

92v-2 ) v 2 L
:_(Zn)vn {F(Eﬂ T]alazna3a4(x+|0)

v v (v Y
+ o) T F[EJF(E+1J(77WZ X Xy T Mgy xalxaz)(x+|0)

22V 14 ? -v-2
_(2 v n{r(5+1ﬂ Xy X, X Xy (X +10)
T

where X=X +X + x5 —x2.

(5.3)

Anti-transforming the above equation one has

K,k (p=10) "%k, k,, (p-i0)" ]

L[y

1% L \Y
= 'Tw(ﬂmz Nasas T Nty Moy, + Meryery Meyers )r(—zj(/? —i0)2

ir(;jr(‘;ﬂj(

k_k
12 T

nalaz az oy +77a3a4 o az)
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. T
-1 ? T (V + 2) (770510;2 ka3 ka4 + 77111053 ka2 ka4 + naizu ka2 ka3

v L \L
S/ kal ka2 S/ ka1 ka4 S/ ka1 ka3 ) r [1—Ej(p - |o)2 1 (5.4)

2
)
- 14 )
in? k. k, k, k, T|2-=]|(p-i0)2
e U (o PR
Computing the Self-Energy in v =4 Dimensions

We proceed here to perform a v -Laurent expansion, keeping from it the v —4

independent term [6]. We Laurent-expand (5.4) around v =4 and encounter

Kk, (p=10) 5k, k,, (p=i0)" |

2

. (1

= v 4 a(nalaz 77(23(14 + 770!20!3770!1(14 + 770!20'4 770!10!3 )p
2 1

- I:E(nalaz ka3 k% - na3a4 kal kaz ) B a(nﬂqaz kag ka4

+ 770:3a4 kal kaz + 77a1a3 kaz ka4 + na1a4 kaz ka3

8
+ 77112(13 kal ka4 + na2a4 kal ka3 ):|p + a kal kaz ka3 ka4 }

i 2
ITT 2

. 46
- E(nalazna;;oq + 77(120(3770(10:4 + na2a4na1a3 )|:In (p - IO) +Inn+C _E:lp

2

LT . 8
n 'H{(”Wz KKy + o K Ko, )[In(p ~i0)+Inn+C —5}

1
(nalaz ka3 ka4 + ﬂa3a4 kal kaz + 770(1113 kaz ka4 + 77051(14 kaz ka3 (55)

24
: 101
+ Moy Ke Ky + i Ko Ko ){m(p ~i0)+Inm+2C —E:l}p

2
. T . 47 & n
- I%kalkazk%k% [In(p —i0)+Inn+C —%}L;an (v-4) }

The exact value of the convolution we are interested in, Ze., the left hand side
of (5.5), is given by the independent term above, as everyone knows. Should the

reader be unfamiliar with this scenario, we direct him/her to [6]. We now get

EGO’WZ“Z*"“ (k) = k”l kaz (,0 - i0)71 * kaa ka4 (ID - io)il

2
I . 46| ,
= _ﬁ(nalaznoga‘; + ’7(120:3’71110:4 + na2a477a1a3 )|:In (ID - IO) +Inn+C _E:|p
7’ . 8
_'ﬁ{(””l“z KKy + o K Ko )[In(p—|0)+|n7c+c —5}
1

- _(77(110:2 ka3 ka4 + 770:30:4 koq kaz + 770:10(3 kaz ka4 + 770(10:4 kaz ka3
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. 101
g Ko Ko +na2a4ka1ka3){ln(p—|0)+ Inm+2C —E}}p
) o (5.6)
—ilk k kK, [In(p—i0)+lnn+C——}}
30 1 2 3 4 30

We face here 1296 diagrams of this type.

6. Axions Enter the Picture

Axions are hypothetical elementary particles conjectured by the 1977 Pec-
cei-Quinn theory so as to tackle the strong CP problem in quantum chromody-
namics. Should they exist and have low enough mass (within a certain range),
they may be of some interest as putative components of cold dark matter [14].
We thus consider now a massive scalar field (axions) interacting with the gravi-

ton and the pertinent Lagrangian becomes

1 1 « 1
Low="% Rylg| - 00" S - E[h’“aﬂy/av(// +my?]. (6.1)
It is possible to recast the Lagrangian now as
Low =L+ L+ Ly +Ly, (6.2)
where
1
Loy =5 90"y +my? ], 6.3)
so that £, is the Lagrangian for the axion-graviton action
1 w
Ly = —EKJ’” @0 oy (6.4)
A new term in the interaction Hamiltonian appears
oL
H,yy = 86(;://1/ v Ly, (6.5)

7. Graviton’s Complete Self Energy

Axions necessarily generate a new contribution to a graviton’s self energy

-1

S enums (K) =K K, (0 + M2 —i0) " £k k, (o +m? —i0) . (7.1)

uoer

To evaluate it face the customary v dimensional integral together with the

Feynman-parameters denoted by the letter x. After a Wick rotation we find

[k#kr (p+m—i0) sk, (p+m? - io)’l]

7.2
Z-l”.k#kr(pv_kv)(ps_kS)dvkdX ( )
o (k—px)* +a '
where
a=p’x—p’x?+m’. (7.3)

Effecting a variables-change u=k — px we encounter
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[k”kr (o +m?=i0) "k k, (p+m? - io)’l]

- “ T 105 gy 74
(u? +a)

v

where
f(u,x,,1,v,9)

=u,u.p,p(1- x) +U,U,u,u; —u,u.p, p,x(1-x)

(7.5)
u, P PX(1-x)—u,u.p,p,x(1-x)—uu,p,px(1-x)
+p,P, P, PX (1- x)2 +U,ugp,p,X?
After computing the associated integrals we find
[k#kr(p+m2—iO)_l*kas(p+m2—iO)_l]
kK, + 77,k k. )m* 2
_ (77;” VKs T TsK,, r) (i F[l—z)
8
x F(l,l—z,é;— ”2)+1F(1,1—1,§;— pzj
22 4m 3 22 4m
. n2m’ (v v v3 p
+1 + + —7TI| =l ——=|F|——=,=:—
(nurnvs nyv’]rs Uysnvr) 4 (2) ( 2 ( 2 2 4m2j
. m”‘zﬁ%
—i(1,k K, + 7,0k kg 77K K, + kK ) e
xF(l—KjF(Zl—V >._ P j (7.6)
2 2'2" 4m?

v 4 %
vk kkk T2 Y |F vo._p
# 12 2 2'2" 4m?

Computing the Self-Energy (v =4)

We appeal once again to a Laurent’s expansion and have

[k#kr (p+m?=i0) kK, (p+m* - io)’l]

2
T 4{m2(’7;zrkvks+77vsk k )|:l 1 2 :l

V- 3" 54m
2
4 11p 1(p
—-2m (U,ur’]vs-‘_nyv’]rs 77ps’7rv)|:8 64m +E m
mZ

- m(n,uskrkv + 17,0k K + 1K K, 1K K )

2 2 2 2 2
Lom L eem o k,krkvks}
12 4 30 4m 6"

2,2

+i an(nur kaS + nvsk,ukr )
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><E(Inm2+In7r+C—1)+%4g2 (Inm2+lnn+C)}

2,2
.mn

O (Uyrk k +77vsk kr)4_22

)+1F(1,1,9;— pzj
7 2 4m
- |27T' (77;”’7\/5 +77,uv77rs +77,us’7vr)
} E_EL_i( P J
8 64m* 15\4m’
x(lnm +In1t+1)—l i—l( P j
32 3
2n°m* P ’ 9. p
=1 105 (ﬂyrﬂvs+nyvnrs+nysf7vr)(m FI11,—;- 2

2 4m
2002 (1,2 2
y m(k m)(
12(4m2+k2—|0)

2
x l[Inmz+Inn+C—£j+1(lnm2+Inrc+C) k -
2 4 5 4

m

77/15 I(r kv + nyvkrks + 17 k,u I(v + ﬂwkyks )

. n?m?
- 8(4m? +k? —iO)(

2 2 2

xm? (Inm2+lnn+C—£)+k_+k_ k .
4 6 154m

2m2

10

2 2 2 \2
K -m F(l,l,g;—izjk—z
21(4m2+k2—|0) 2" 4m? ){ 4m

k2
kykrkvks {(In m’ +Inm) +—_i0}

nyskr I(V + nyvkr kS + nrskp I(v + nwkyks )

(Uﬂskrkv +77yvkrks +77rskykv +77rvkyks)

4m? + k?
. m’m? k? —m? k? 7 k?
—i k kkk Fl1,1,—;— 7.7
30 “ "V 4m? +k?—i04m? 2" 4m? 7.7)

+y a,(v-4)".
n=0
Once again, the exact result for our four-dimensional convolution is
ZGMyvrs (k) = kykr (P +m? - io)il * kvks (,0 +m? - i0)71

2_2
=i mzn (ngrkvks + nvskykr)

x{%(lnm%lme—l) ! ':12(Inm2+lnrc+c)}

.m?’r?

+ Iw(nyrkvks + nvskykr)4 2

(G 3711500
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2
. 1 10p 1( p
- |2752m4 (77,”’7\/5 + nyvnrs +’7ysnvr){|:§_gm_ﬁ[4mzj :l

it oot

2n°m* P ’ 9 p
(Mg + T Thes + M ) yrocl I R

105 am?

o m (k2 - mz)
B 12(4m2 +k? - iO) (nﬁlSkrkv ’ nﬂvk’ks + ﬂrsk;zkv + ﬂwkyks)

2
o linm?sinrec-t +£(Inm2+lnn+c) k .
2 4)"s am

i n°m?
————(n kK, +71,Kk +7n.kk, +71.KkK
8(4m +k* - (77“5 e T8, T s)
2 2 2
xm? (Inm2+lnn+C—EJ+k_+k_ K .
4 6 154m
. ’m?
- 10 (nﬂskk +77ﬂvkrks+77rskykv+77rvkyks)
2 2 2 \2
X kz m2 : F(l’l,g,_%j k_2
21(4m +k* -i0) 2" 4m? ) 4m
n’ 2 k?
kﬂkrkvk{(lnm +|nn)—m} (7.8)

2,2 2 2 2 2
ST ek — K pfg LK
30 ¢ 4m* +k* —i04m 2 4m

Accordingly, our desired self-energy total is a combination of ZGa1a2a3a4(k)

and  Zgy 0000, (k) .

8. Axion’s Self Energy
The self-energy reads

UV, IS
E”S(k)ziy yy kK, (p+m?—i0) " x(p~i0) ™", (8.1)
PA

In v dimensions we have

[kvkr (p+m®— io)’1 *(p - io)*l = (- iok)v[k(rp e io] d'k. (8.2)

Using the same Feynman parameters as above we have

[kvkr(p+m2—io)’* -i0) } |jj—dedx, (8.3)

0 [ (k- px)° +
where
a=(p>+m?)x-px’. (8.4)

We compute the integral (8.3) and encounter
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[kvkr (p+m” - io)’1 *(p- io)‘l}

v

v

v-2_72
=i77vrm n T 1_K = 1,1_K,K+1;_£2 (8.5)
v 2 22 m

H v—4 %
L 2kkm™n? o Ve 1'2_K1K+2;_£2 _
v+2 2 22 m

Self-Energy Computation (v =4)

We Laurent-expand again, this time (8.5) around v=4.

[kvk, (p+m?=i0) " *(p- io)‘ll

2
Cin2 L[ ™oy,
v—-4 2

2
+ M (1+1£j(lnmz+lnn+C—£J (8.6)
4 3m 2

2

—(1+iﬂzj —ﬁ(lnm2 +Inn+C —ij
9m 3 2

2 ©
+1(%j{m£_ﬁ}:(l’l'5;_§)+Zan(V—4)n}
n=1

4\'m 12 m*> 3

The v -independent term yields the exact convolution result we need

-1

o (k) =kk, (p+ m? —iO) *(p_io)fl

2
= ip? ™ 1+1£2 Inm2+Inrc+C—1
4 3m 2

(8.7)
—(1+1£ﬂ—kv—;r(ln m?+Inn+C —%)

2
+1(£2j M p ke F(m,g,;_%j
4\m 12 m 3 m

9. Conclusions

We have developed above an approximate quantum field theory (QFT) of
Eintein’s gravity (EG) that is both unitary and finite. It critically necessitates of a
new constraint-introduction in the EG-Lagrangian. Laurent expansions were a
main tool for our endeavors. Our approximation consists in defining the gravi-
ton field as ¢*" =y*"¢ with y*" a constant tensor and ¢ a scalar field. Our
mathematical apparatus has been developed by Bollini et al [2] [3] [4] [5] [6]
and is powerful enough so as to be able to quantize non-renormalizable field
theories [2] [3] [4] [5] [6]. We have evaluated in finite fashion

o agraviton’s self-energy in the EG-field,

o the self-energy in the presence of a massive scalar field (axions, for example).

Two sorts of diagram emerge: the original ones of the pure EG field plus the
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ones generated by the addition of a scalar field.

o An axion’s self-energy.
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