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Abstract 
In this paper, we are going to derive numerical methods for solving the KdV 
equation using Pade approximation for space direction, trapezoidal and im-
plicit mid-point rule in the time direction. The schemes will be analyzed for 
accuracy and stability. The exact solution and the conserved quantities will be 
used to display the efficiency and the robustness of the proposed schemes. 
Interaction of two and three solitons will be conducted. The numerical results 
showed, interaction behavior is elastic and the conserved quantities are con-
served which is a good indication of the reliability of the schemes under con-
sideration. 
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1. Introduction 

In this work, we consider the well known Kortweg-de Vries (KdV) equation [1]  

( ) ( ) [ ] ( ]23 0, , , 0,t xxx l rx
u u u x t D x x T+ + = ∈ = × ≤           (1) 

with initial condition  

( ) ( ) [ ]0,0 , ,l ru x u x x x x= ∈                    (2) 

and homogenous boundary conditions  

( ) ( ) ( ) ( ), , 0, , , 0l l x l x ru x t u x t u x t u x t= = = =             (3) 

where x and t denote the spatial and temporal variables, respectively, and 
( ),u x t  is the unknown function. The KdV equation is one of the mostly ana-

lyzed nonlinear partial differential equation. It is used to model the propagation 
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of water waves and also arises in other areas such as hydrodynamics waves in 
cold plasma, and acoustic waves in harmonic crystals. The importance of this 
equation lies not only in their applications but also in some special properties 
which are not expected from a nonlinear partial differential equation. In fact, the 
KdV equation has certain special solution known as solitary wave solution [2] 
[3] which retains their shape in time and moves to the right. It can also have 
multi-soliton solutions, where the individual solutions interact nonlinearly at 
close distance and then move away from each other without changing in their 
shapes. 

Once these interesting aspects had been discovered, several authors investi-
gated the solution of the KdV equation from both the theoretical and numerical 
point view. Among the methods available in the literature, Hirota and Adomian 
methods, these methods are able to provide explicit solution which is useful to 
check the accuracy of the numerical methods aiming at approximating the solu-
tion of the KdV equation. Many researchers have derived efficient numerical 
methods for investigating the numerical solution of the KdV equation. For in-
stance, in [4] a class of three level finite difference scheme for solving KdV equa-
tion is proposed firstly by Zabusky and Kruskal who discovered the concept of 
soliton, which can be defined as a localized waves with special interaction prop-
erties, while studying the results of a numerical computation on the KdV equa-
tion. The proposed three-level scheme which requires a starting procedure satis-
fies momentum and energy conservation laws. In [5], a two-level hopscotch algo-
rithm is derived and the stability and dispersion is analyzed. The Crank-Nicolson 
extrapolation scheme for the KdV equation is proposed in [6]. A hybrid numer-
ical method for KdV equation is proposed by a combination of finite difference 
and sinc collocation method is proposed in [7]. In [8], a quadratic B-spline Ga-
lerkin finite element method is proposed. The Galerkin method for KdV equa-
tion using a new basis of smooth piecewise cubic polynomials is developed for 
simulating the motions and interaction of solitary waves presented in [9]. Petrov 
Galerkin method [10] [11] [12] [13] [14] is used to solve KdV and KdV like eq-
uations to obtain highly accurate results. Numerical solution of KdV equation by 
Galerkin B-spline finite element method is presented in [15]. In [16], The con-
servation and convergence of two finite difference schemes for KdV equations 
with initial and boundary conditions derived, the first scheme is a two-level non-
linear implicit finite difference scheme which is proved to be unconditional 
convergent, and the second one is a three-level linearized finite difference scheme 
and proved to be conditionally convergent. 

In this paper, we will derive numerical schemes for the KdV equation; based 
on the Padé approximation, fourth approximation of the space derivatives is 
used. The second order implicit schemes using, trapezoidal rule, implicit mid-
point rule (both are implicit and unconditionally stable), and the explicit 
Runge-Kutta method of order four are used to approximate the time derivative. 
A nonlinear penta-diagonal system is obtained. Newton’s method is used to 
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solve this system in case of the implicit schemes. The implicit schemes are un-
conditionally stable according to the von-Nueumann stability analysis. Several 
numerical examples are carefully designed to validate the efficiency and robust-
ness of the proposed schemes, single soliton, interaction of two and three soli-
tons. 

The rest of the paper is organized as follow. In Section 2, we present three dif-
ferent schemes using fourth order Pade approximation in space direction and 
second order in time direction using trapezoidal and implicit mid- point rule. 
Also we implement the explicit fourth Runge-Kutta method to solve the first or-
der differential system in time. In Section 3, the accuracy of the proposed 
schemes is given. In Section 4, the stability analysis of scheme 1 and scheme 2 
are derived using von-Neumann stability analysis. In Section 5, we present vari-
ous numerical tests which validate the accuracy and the efficiency of the pro-
posed schemes. Finally, we conclude with a brief discussion in Section 6. 

2. Numerical Methods 
In this section, we derive a high order compact finite difference method for the 
initial boundary value problem (1)-(3). We first describe our solution domain 
and its grids. The solution domain is defined to be ( ){ }, | ,0l rx t x x x t T≤ ≤ ≤ ≤ . 

Let r lx x
h

M
−

=  and Tk
N

=  be uniform step sizes in the spatial and temporal 

directions respectively, Denote ,m l nx x mh t nk= + =  for  

0,1,2, , ; 0,1, 2, ,m M n N= =  . Let n
mu  and n

mU  denote respectively. The ex-

act and the numerical solution at the grid point ( ),m nx t . Using Pade approxi-

mation, the following approximations for space derivatives are used [17] [18] 
[19]  

( )
( ) ( ) ( )

( ) ( )4 4,x xxx

B E C E
u O h u O h

A E A E
≈ + ≈ +              (4) 

( ) 2 1 21 26 66 26 ,
120

A E E E E E− − = + + + +   

( ) 2 1 21 10 10 ,
24

B E E E E E
h

− − = + − −   

( ) 2 1 2
3

1 2 2 ,
2

C E E E E E
h

− − = − + −   

and the shift operator E defined by  
j

m m jE u u +=  

Now by using these approximations in KdV Equations (1)-(3), we obtain the 
first order differential system in time  

( ) ( ) ( )23 0.m m mA E U B E U C E U+ + =                  (5) 

By using (4), the system in (5) can be written as  
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( )

( )

( )

2 1 1 2

2 2 2 2
2 1 1 2

2 1 1 23

1 26 66 26
120

1 10 10
8

1 2 2 0, 1,2, , 1
2

m m m m m

m m m m

m m m m

U U U U U

U U U U
h

U U U U m M
h

+ + − −

+ + − −

+ + − −

+ + + +

+ + − −

+ − + − = = −

    



      (6) 

where mU  denotes the time derivative of U at mx ; and the boundary condi-
tions 

1 0 10, 0N NU U U U− += = = =  

The system in (6) can be written in a matrix vector form as  

( ) ,M =U F U                          (7) 

where M is the penta diagonal matrix 

66 26 1 0 0
26 66 26 1 0 0
1 26 66 26 1 0 0
01 ,

0120
1

1 26 66 26
0 0 1 26 66

M

 
 
 
 
 
 =  
 
 
 
  
 

  

 



      

      

      

   

  

 

and the elements of ( )F U  are 

( ) ( )

( )

2 2 2 2
2 1 1 2

2 1 1 23

1 10 10
8

1 2 2 , 1,2, , 1
2

m m m m m

m m m m

F U U U U
h

U U U U m N
h

+ + − −

+ + − −

= − + − −

− − + − = −

U



    (8) 

[ ]1, , , .t
NU U U −=U   

The previous differential system can be solved by 
1) Trapezoidal rule  

( ) ( )
1

11 ,
2

n n
n nM

k

+
+ −  = +    

U U F U F U              (9) 

Trapezoidal method is of second order, implicit scheme, and A-stable method 
2) Implicit mid-point rule  

1 1

2

n n n n

M
k

+ +   − +
=   

   

U U U UF                (10) 

Implicit middle point rule is of second order, implicit scheme, and A-stable 
method. 

The previous methods (Crank-Nicolson like schemes), are usually produce 
unconditionally stable method, nonlinear penta diagonal system to be solved at 
each time step. Explicit Runge-Kutta method of fourth order will be used as well, 
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solution of four linear penta diagonal systems are needed for each time step us-
ing Crouts method, and the method is conditionally stable. The details of the 
proposed schemes will be discussed in the following subsections. 

2.1. Scheme 1 (Trapezoidal Rule) 

Trapezoidal rule method (9) which is of second order accuracy and A-stable is 
used to solve the ordinary differential system in (7), we assume n

mU  to be the 
fully discrete approximation of the exact solution n

mu  this will lead to the non-
linear implicit scheme 

( )
( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

1 1 1 1 1
2 1 1 2

2 1 1 2

1 1 1 12 2 2 2
1 2 1 1 2

2 2 2 2

2 1 1 2

1 1 1 1
2 2 1 1 2 2

26 66 26

26 66 26

10 10

10 10

2 2

n n n n n
m m m m m

n n n n n
m m m m m

n n n n

m m m m

n n n n

m m m m

n n n n n
m m m m m

U U U U U

U U U U U

p U U U U

U U U U

p U U U U U

+ + + + +
+ + − −

+ + − −

+ + + +

+ + − −

+ + − −

+ + + +
+ + − − +

+ + + +

− + + + +

+ + − −
+ + − − 

+ − + − + −( )1 1 22 2 0n n n
m m mU U U+ − −+ − =

  (11) 

where  

1 2 1 0 13

15 30, , 1, 2, , , 0, 0
2 N N

k kp p m M U U U U
h h − += = = = = = =     (12) 

The system in (11) is a nonlinear penta-diagonal system in the unknown vec-
tor 1n+U . The solution of this system can be obtained by many methods, like: 
Newton’s method; the Predictor-Corrector method and linearization techniques. 
Newton’s method will be adopted in this work. 

2.2. Scheme 2 (Implicit Mid-Point Rule) 

A second finite difference scheme obtained by using (10) the mid-point rule 
which is of second order and A-stable, using this will lead us to the nonlinear 
scheme of the form 

The system in (10) can be given by the finite difference equation.  

( )
( )
( )
( )(

( ))

1 1 1 1 1
2 1 1 2

2 1 1 2

2 2 2 2
1 2 1 1 2

1 1 1 1
2 2 1 1 2

2 1 1 2

26 66 26

26 66 26

10 10

2 2

2 2 0, 1,2, , 1

n n n n n
m m m m m

n n n n n
m m m m m

m m m m

n n n n
m m m m

n n n n
m m m m

U U U U U

U U U U U

p V V V V

p U U U U

U U U U m M

+ + + + +
+ + − −

+ + − −

+ + − −

+ + + +
+ + − −

+ + − −

+ + + +

− + + + +

 + + − − 

+ − + −

+ − + − = = −

         (13) 

where 
1

1 2 1 0 13

15 30, , , 0, 0
2 4

n n
i i

i N N
U U k kV p p U U U U

h h

+

− +

+
= = = = = = =    (14) 

The system in (13) is a nonlinear penta-diagonal system which can be solved 
by many iterative methods, Newton’s method is used to do this job in this work. 
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2.3. Scheme 3 (Runge-Kutta of Order 4) 

We can also solve the first order differential system (7) by using the explicit 
Runge -Kutta method of fourth order 

[ ]1
1 2 3 4

1 2 2 ,
6

n n+ = + + + +U U K K K K               (15) 

( )1
1

nkM −=K F U  

1
2 1

1
2

nkM K−  = + 
 

K F U  

1
3 2

1
2

nkM K−  = + 
 

K F U  

( )1
4 3

nkM K−= +K F U  

where  

( ) ( )

( )

2 2 2 2
2 1 1 2

2 1 1 23

1 10 10
8
1 2 2 , 1,2, , 1

2

m m m m m

m m m m

F U U U U
h

U U U U m N
h

+ + − −

+ + − −

= − + − −

− − + − = −

U



   (16) 

The resulting system is of fourth order accuracy in both directions time and 
space, it is conditionally stable. In each time step, we need to solve four linear 
penta diagonal systems to find 1 3, ,2K K K  and 4K . The solution of the linear 
penta-diagonal system can be obtained by using Crout’s method, only one LU 
factorization is needed at the beginning of the calculations which can be done 
easily. 

3. Accuracy of the Proposed Schemes 

To study the accuracy of Scheme 1, we replace the numerical solution n
iU  by 

the the exact solution n
iu  in (8) to get 

( )
( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )
( )

1 1 1 1 1
2 1 1 2

2 1 1 2

1 1 1 12 2 2 2
1 2 1 1 2

2 2 2 2

2 1 1 2

1 1 1 1
2 2 1 1 2 2

26 66 26

26 66 26

10 10

10 10

2 2 2

n n n n n
m m m m m

n n n n n
m m m m m

n n n n

m m m m

n n n n

m m m m

n n n n n
m m m m m

u u u u u

u u u u u

p u u u u

u u u u

p u u u u u

+ + + + +
+ + − −

+ + − −

+ + + +

+ + − −

+ + − −

+ + + +
+ + − − +

+ + + +

− + + + +

+ + − −
+ + − − 

− + − + −( )( )1 1 22 0n n n
m m mu u u+ − −+ − =

   (17) 

Taylor’s expansion for all terms in (17) about grid point ( ),m nx t , the follow-
ing expressions are obtained 

1 2 2 3 2 3 2 4

2 2 3 2 22 4 6 8

n n u k u h u k u kh u
k t t t x t t x

+ − ∂ ∂ ∂ ∂ ∂
= + + + + +
∂ ∂ ∂ ∂ ∂ ∂ ∂

u u
       (18) 

( ) ( )12 2 2 2 2 2 3 2 2 4 4 5 2

3 3 5

3 3 3 3 3 73
2 2 4 8 240

n n

x

u k u h u kh u h u
x t x x t x x

+ + ∂ ∂ ∂ ∂ ∂  = + + + + +
  ∂ ∂ ∂ ∂ ∂ ∂ ∂
  



u u
(19) 
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1 3 4 2 6 2 5

3 3 5 52 2 8 4

n n

xxx

u k u kh u h u
x t x t x x

+ + ∂ ∂ ∂ ∂
= + + + +  ∂ ∂ ∂ ∂ ∂ ∂ 

u u
        (20) 

By substituting these expressions into (17), and by collecting similar terms, we 
will get the local truncation error (LTE) as  

2 3 2 3

3 3

2 3 2 3 2 2 2 3

2 3 2 3

2 3 4 5 2

3 5

3 3
2

3 3
8 4

7
6 240

u u u k u u uLTE
t x t t xx x

kh u u u u h u u u
t x t xt x x x x

k u h u
t x

   ∂ ∂ ∂ ∂ ∂ ∂ ∂
= + + + + +   ∂ ∂ ∂ ∂ ∂∂ ∂   

   ∂ ∂ ∂ ∂ ∂ ∂ ∂ ∂
+ + + + + +   ∂ ∂ ∂ ∂∂ ∂ ∂ ∂ ∂   
 ∂ ∂

+ + + ∂ ∂ 


  (21) 

The first four brackets are zero by the KdV equation, LTE will be reduced to 
2 3 4 5 2

3 5

7
6 240
k u h uLTE

t x
 ∂ ∂

= + + ∂ ∂ 
                   (22) 

So, the scheme 1 is of second order in time and fourth order in space 

( )2 4O k h+ . 
Similar analysis can be done for Scheme 2. Scheme 2 is also of second order in 

time and fourth order in space ( )2 4O k h+ . Regarding Scheme 3, the scheme is 
fourth order in both directions, space and time ( )4 4O k h+ . 

4. Stability Analysis 

In this section, we want study the stability of the proposed schemes [20]. Our 
stability analysis is based on the von -Neumann theory in which the growth fac-
tor of atypical Fourier mode defined as  

e en nk i mh
iU α β=                          (23) 

where 1i = − , β  is real number and ( )α α β=  in general complex. To im-
plement the Fourier stability analysis, the KdV equation needs to be linearized 
by assuming that ( ),u x t  in the nonlinear term u ux is locally constant. The li-
near version of (11) can be given as  

( )
( )

1 1 1 1 1
2 1 1 2

2 1 1 2

1 1 1 1
1 2 1 1 2 2 1 1 2

1 1 1 1
2 2 1 1 2 2 1

26 66 26

26 66 26

10 10 10 10

2 2 2 2

n n n n n
m m m m m

n n n n n
m m m m m

n n n n n n n n
m m m m m m m m

n n n n n n
m m m m m m

U U U U U

U U U U U

p U U U U U U U U

p U U U U U U U

ω

+ + + + +
+ + − −

+ + − −

+ + + +
+ + − − + + − −

+ + + +
+ + − − + +

+ + + +

− + + + +

 + + − − + + − − 

+ − + − + − +( )1 2 0n n
m mU− −− =

 (24) 

where 

1 2 3

15 30, , max n
i

k kp p U
h h

ω= = =                (25) 

Substituting (23) into (24), we get after some manipulation the following equ-
ation 

( ) ( )1 1 2 2 3 1 1 2 2 3
kp p i e p p iαγ ωγ γ γ ωγ γ   + + = − +             (26) 
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where 

( ) ( )
( ) ( )
( ) ( )

1

2

3

66 2cos 2 52cos ,

2sin 2 20sin ,

2sin 2 4sin

h h

h h

h h

γ β β

γ β β

γ β β

= + +

= +

= +

               (27) 

By solving Equation (26) for e kα , we can get  

( )
( )

1 1 2 2 3

1 1 2 2 3

e k p p i
p p i

α γ ωγ γ
γ ωγ γ
− +

=
+ +

                  (28) 

It is easy to see from (28) that, e 1kα = , thus we can say that scheme 1 and 
scheme 2 are unconditionally stable according von- Neumann stability analysis. 
For scheme 3 the numerical results showed that the scheme is conditionally sta-
ble (since it is explicit). 

5. Numerical Results 

In this part, several numerical examples are carefully designed to validate the ef-
ficiency of the proposed methods. In the physical opinion, the motion and inte-
ractions of solitons will be considered. In addition, some conservation laws that 
KdV equation satisfies will be examined by numerically calculating (using tra-
pezoidal rule) the following three invariants corresponding to conservation of 
mass, momentum and energy as defined [7]  

( )1 , d Val 1I u x t x
∞

−∞
= =∫                     (29) 

( )2
2 , d Val 2I u x t x

∞

−∞
= =∫                    (30) 

( ) ( )( )23
3 2 , , d Val 3xI u x t u x t x

∞

−∞
 = − =  ∫             (31) 

To demonstrate the efficiency and accuracy of the presented method for the 
KdV equation, we use the maximum error norm given by  

1
max ,n n n n

m m m mm M
L u U U u∞ ≤ ≤

= − = −                  (32) 

5.1. Single Soliton 

To test our numerical methods, we choose the initial condition  

( ) ( )2 2
0,0 2 sech , 0 100u x x x xλ λ= − ≤ ≤              (33) 

subject to the homogenous boundary conditions. The exact solution for this test 
is  

( ) ( )( )2 2 2
0, 2 sech 4 ,u x t x t xλ λ λ= − −                 (34) 

In order to generate the numerical solutions, the following parameters are 
used  

10
00.1, 0.001, 30, 0.5, 10 .h k x TOLλ −= = = = =            (35) 

The exact values of the conserved quantities (29)-(31) using (34) are  
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3 5
1 2 3

16 644 , ,
3 5

I I Iλ λ λ= = =                  (36) 

In Table 1 and Table 2, we display the conserved quantities and the error for 
Scheme 1 and Scheme 2, respectively. The results show that the methods con-
serve the conserved quantities, with high accuracy. The simulation of the single 
soliton is given in Figure 1. 

In Table 3, we present the results for a single solution using Scheme 3. These 
results are obtained by using the same previous parameters except 

00.0001, 20k x= = . From the numerical results, we have noticed that the me-
thod is conserves the conserved quantities exactly with high accuracy. The mo-
tion of single soliton displayed in Figure 2.  

 
Table 1. Scheme 1 (Single soliton). 

Val3 Val2 Val1 Error Time 

0.400317 0.666667 1.999998 0.000000 0.000000 

0.400317 0.666667 1.999999 0.000000 0.200000 

0.400317 0.666667 1.999999 0.000000 0.400000 

0.400317 0.666667 1.999999 0.000001 0.600000 

0.400317 0.666667 1.999999 0.000000 0.800000 

0.400317 0.666667 1.999998 0.000001 1.000000 

 
Table 2. Scheme 2 (Single soliton). 

Val3 Val2 Val1 Error Time 

0.400317 0.666667 1.999998 0.000000 0.000000 

0.400317 0.666667 1.999999 0.000000 0.200000 

0.400317 0.666667 1.999999 0.000000 0.400000 

0.400317 0.666667 1.999999 0.000001 0.600000 

0.400317 0.666667 2.000000 0.000001 0.800000 

0.400317 0.666667 2.000000 0.000001 1.000000 

 
Table 3. Scheme 3 (Single soliton). 

Val3 Val2 Val1 Error Time 

0.400317 0.666667 2.000000 0.000000 0.000000 

0.400317 0.666667 2.000000 0.000000 0.200000 

0.400317 0.666667 2.000000 0.000000 0.400000 

0.400317 0.666667 2.000000 0.000000 0.600000 

0.400317 0.666667 2.000000 0.000000 0.800000 

0.400317 0.666667 2.000000 0.000000 1.000000 
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Figure 1. The evolution of the numerical solution of scheme 1 with  

0.1, 0.001, 0.5h k λ= = = . 
 

 

Figure 2. The evolution of the numerical solution of scheme 3 with  
0.1, 0.0001, 0.5h k λ= = = .  

5.2. Rate of Convergence 

To calculate the order of the proposed numerical schemes. We define the rate of 
convergence (RTC) as 

( )
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 

             (37) 

To calculate the rate convergence in space using (37), we choose 0.001k = , 
with different values of h. we calculate the L∞  error norm and the (RTC) for 
different values of h, and we displayed these results in Table 4, and fourth order 
convergence in space is observed.  

To calculate the rate convergence in time, we choose 0.05h = , with different 
values of k. we calculate the L∞  error norm and the (RTC for different values 
of k, and we displayed these results in Table 5, and second order convergence in 
time is observed. 
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Table 4. Rate of convergence in space with k = 0.001, λ = 0.5. 

T = 1.0 

RTC(h) L∞ h 

 0.003370 1.0 

3.911177955 0.000224 0.5 

4.106915203 0.000013 0.25 

3.700439717 0.000001 0.125 

 
Table 5. Rate of convergence in time with h = 0.05, λ = 0.5. 

T = 1.0 

RTC(k) L∞ k 

 0.003996 0.5 

1.971402531 0.001019 0.25 

1.937655901 0.000266 0.125 

5.3. Two Solitons Interaction 

As a second problem, we have discussed the behavior of the interaction of two 
solitary waves for Scheme (1) and (2) for different analytical solutions. 

5.3.1. Sum of Two Single Solitons (a) 
We choose initial condition a sum of two well separated single solitons: 

( ) ( )( )
2

2

1
,0 2 sech ,j j j

j
u x x xλ λ

=

= −∑                 (38) 

jλ  and jx  are arbitrary constants. To ensure an interaction of two solitary 
waves, we select the set of parameters 0.1h = , 0.001k = , 1 10x = , 2 40x = , 

1 1λ = , 2 0.5λ = , 0 100x≤ ≤ . From the numerical result we have found that 
the two solitons recover their shapes after the interaction and the computed 
conserved quantities are in a very good agreement with the exact ones. See Table 
6 and Table 7. For the interaction scenario, see Figure 3. 

5.3.2. Exact Two Solitons Solution (b) 
In this test we pick our initial condition from the exact two soliton solution [2] 
[3] [21]  

( ) ( )( ), 2 log ,
xx

u x t f x t=  

( ) 1 2 1 2

2
31 2

1 2

, 1 e e e , , 1, 2.i i if x t x t iη η η ηα α
η α α

α α
+ −

= + + + = − = + 
 

3 , 1, 2.i i ix t iη α α= − =                      (39) 

together with the set of parameters 0.1h = , 0.001k = , 1 0.5α = , 2 0.8α = , 
30 30x− ≤ ≤ . The error and conserved quantities presented in Table 8 and Ta-

ble 9. The results are highly accurate and the values of conserved quantities are 
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in good agreement with their analytical values. The simulation of this interaction 
is given in Figure 4 for 10 20t− ≤ ≤ . We have noticed that, the two waves col-
lide each other and leave the interaction region without any disturbance in their 
identities.  

 
Table 6. Scheme 1 (Interaction of two solitons (a)). 

Val3 Val2 Val1 Time 

13.240654 5.999996 5.999999 0.000000 

13.240660 5.999999 5.999996 0.200000 

13.240663 5.999998 5.999995 0.400000 

13.240669 5.999999 6.000003 0.600000 

13.240674 6.000002 5.999997 0.800000 

13.240672 6.000000 5.999997 1.000000 

 
Table 7. Scheme 2 (Interaction of two solitons (a)). 

Val3 Val2 Val1 Time 

13.240654 5.999996 5.999999 0.000000 

13.240671 6.000002 6.000000 0.200000 

13.240669 6.000001 5.999997 0.400000 

13.240671 6.000001 5.999999 0.600000 

13.240657 5.999998 5.999996 0.800000 

13.240668 5.999998 5.999999 1.000000 

 
Table 8. Scheme 1 (Interaction of two solitons (b)). 

Val3 Val2 Val1 Error Time 

0.143585 0.424667 2.599985 0.000004 0.000000 

0.143581 0.424667 2.599975 0.000006 4.000000 

0.143595 0.424667 2.599960 0.000010 8.000000 

0.143614 0.424667 2.599930 0.000017 12.000000 

0.143628 0.424667 2.599872 0.000030 16.000000 

0.143635 0.424667 2.599723 0.000071 20.000000 

 
Table 9. Scheme 2 (Interaction of two solitons (b)). 

Val3 Val2 Val1 Error Time 

0.143585 0.424666 2.599985 0.000004 0.000000 

0.143581 0.424666 2.599974 0.000006 4.000000 

0.143595 0.424666 2.599957 0.000011 8.000000 

0.143614 0.424666 2.599927 0.000017 12.000000 

0.143627 0.424666 2.599871 0.000030 16.000000 

0.143635 0.424666 2.599720 0.000070 20.000000 
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Figure 3. Two solitons interaction with 1 20.1, 0.001, 1.0, 0.5h k λ λ= = = = . 
 

 

Figure 4. Numerical solution of two solitary waves for scheme 2 with  

1 20.1, 0.001, 0.5, 0.8h k α α= = = = . 

5.3.3. Two Solitons Solution (c) 
We consider also the interaction of two solitary waves using the initial condition 
[3]  

( ) ( ) ( )
( ) ( ) 2

3 4cosh 2 cosh 4
,0 12
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x x
u x

x x

+ +
=

+  
             (40) 

where the exact solution  

( ) ( ) ( )
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, 12
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x t x t
u x t

x t x t

+ − + −
=

− + −  
         (41) 

By using (40) and the set of parameters 0.05h = , 0.0001k = , 0.1 0.1t− ≤ ≤ , 
10 10x− ≤ ≤ . The errors and conserved quantities are displayed in Table 10 and 

Table 11. The results are highly accurate and the conserved quantities are almost 
constants. The interaction scenarios are displayed in Figure 5. We have noticed 
that the two waves interact and emerge after the interaction without any distur-
bance in their identities. 

Using Scheme 3 with the initial condition (38) and the set of parameters  

1 2 1 20.1, 0.0001, 10, 30, 0.8, 0.4,0 70h k x x xλ λ= = = = = = ≤ ≤  

To check the interaction of two solitons, in Table 12, we display the con-
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served quantities which exactly conserved. The interaction scenario displayed in 
Figure 6.  

 
Table 10. Scheme 1 (Interaction of two solitons (c)). 

Val3 Val2 Val1 Error Time 

422.491406 47.999982 11.996321 0.002695 0.000000 

422.564941 47.999976 11.995853 0.003504 0.020000 

422.754541 47.999960 11.996291 0.002411 0.040000 

422.987451 47.999969 11.995336 0.003610 0.060000 

423.200684 47.999957 11.994968 0.003798 0.080000 

423.367285 47.999942 11.995294 0.004011 0.100000 

 
Table 11. Scheme 2 (Interaction of two solitons (c)). 

Val3 Val2 Val1 Error Time 

422.491455 48.000003 11.998999 0.001454 0.000000 

422.565820 48.000009 11.999003 0.002442 0.020000 

422.754541 48.000006 11.998728 0.001779 0.040000 

422.986865 48.000018 11.998357 0.002762 0.060000 

423.202734 48.000031 11.998341 0.002609 0.080000 

423.370752 48.000009 11.997966 0.002560 0.100000 

 
Table 12. Scheme 3 (Runge-Kutta of order 4). 

Val3 Val2 Val1 Time 

4.333928 3.072002 4.800000 0.000000 

4.333928 3.072002 4.799999 0.200000 

4.333928 3.072002 4.800002 0.400000 

4.333928 3.072002 4.799999 0.600000 

4.333928 3.072002 4.799999 0.800000 

4.333928 3.072002 4.800002 1.000000 

 

 

Figure 5. Numerical solution of two solitary waves for scheme 1 with  
0.05, 0.0001h k= = . 
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Figure 6. Numerical solution of two solitary waves for scheme 3 with  

1 20.1, 0.0001, 0.8, 0.4h k λ λ= = = = . 

5.4. Three Solitons Interaction 

In this test, we want to study the interaction of three solitons having different 
amplitudes and traveling in the same direction. We choose the initial condition 
as sum of three well separated solitons of the form  

( ) ( )( )
3

2

1
,0 2 sech ,j j j

j
u x x xλ λ

=

= −∑                (42) 

subject to the homogenous boundary conditions. We have considered the 
Scheme 1 and Scheme 2, with parameters 0.1h = , 0.001k = , 1 2λ = , 2 1λ = , 

3 0.5λ = , 1 10x = , 2 40x =  and 3 50x =  over the interval 0 100x≤ ≤ , while 
we have considered Scheme 3 with the same previous parameters except 

0.0001k = . In Tables 13-15, we presented the conserved quantities for the 
proposed schemes. All methods showed the conservation of the conserved quan-
tities. In Figure 7 and Figure 8, we display the interaction scenario of the three 
solitons. We have noticed that the three solitons recover their shapes after the 
interaction 

5.5. Single Soliton Using Periodic Boundary Conditions 

The final test in this work is to study the behavior of single soliton with periodic 
boundary conditions (for long time simulation) using Scheme 1. We select the 
set of parameters  

10
00.1, 0.001, 20, 0.5, 10h k x tolλ −= = = = =              (43) 

In Table 16, we presented the error and conserved quantities. We have no-
ticed a high accuracy and exact conservation of the conserved quantities. In 
Figure 9, we display the motion of the single soliton for 0, ,50t =  . 

6. Conclusion 

The numerical schemes for the KdV equation presented using Pade approxima-
tion of fourth order accuracy in space direction and second order accuracy in 
time using trapezoidal and implicit middle point rule. The resulting system is a 
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nonlinear penta diagonal system, where Newton’s method is used to find the nu-
merical solutions. Scheme 1 and Scheme 2 are unconditionally stable, while the 
scheme 3 is conditionally stable with fourth order accuracy in both directions.  

 
Table 13. Scheme 1 (Three solitons). 

Val3 Val2 Val1 Time 

427.895508 48.667819 13.999986 0.000000 

427.897021 48.667804 13.999940 0.200000 

427.897119 48.667838 14.000014 0.400000 

427.896875 48.667822 14.000009 0.600000 

427.897363 48.667810 14.000026 0.800000 

427.896875 48.667810 14.000029 1.000000 

 
Table 14. Scheme 2 (Three solitons). 

Val3 Val2 Val1 Time 

427.895508 48.667819 13.999986 0.000000 

427.901660 48.667767 13.999883 0.200000 

427.901025 48.667810 13.999992 0.400000 

427.900732 48.667776 14.000037 0.600000 

427.901465 48.667801 14.000011 0.800000 

427.901709 48.667822 13.999956 1.000000 

 
Table 15. Scheme 3 (Three solitons). 

Val3 Val2 Val1 Time 

427.895508 48.667819 13.999986 0.000000 

427.901207 48.667807 14.000006 0.200000 

427.901237 48.667807 13.999865 0.400000 

427.900962 48.667807 14.000108 0.600000 

427.900719 48.667807 13.999809 0.800000 

427.900354 48.667807 13.999955 1.000000 

 
Table 16. Scheme 1 (Periodic boundary conditions). 

Val3 Val2 Val1 Error Time 

0.400317 0.666667 1.999998 0.000000 0.000000 

60.40031 0.666666 1.999999 0.000001 0.200000 

0.400317 0.666666 2.000000 0.000001 0.400000 

0.400317 0.666666 1.999998 0.000001 0.600000 

0.400317 0.666666 1.999998 0.000001 0.800000 

0.400317 0.666666 1.999999 0.000001 1.000000 
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Figure 7. Three solitons interaction for scheme (1) and (2) with  

1 2 30.1, 0.001, 2.0, 1.0, 0.5h k λ λ λ= = = = = . 
 

 

Figure 8. Three solitons interaction for scheme 3 with  

1 2 30.1, 0.0001, 2.0, 1.0, 0.5h k λ λ λ= = = = = . 
 

 

Figure 9. The evolution of the numerical solution of scheme 1 with  
0.1, 0.001, 0.5h k λ= = = . 

 
Different tests are used to check the accuracy and efficiency of the proposed 
schemes. The exact solutions and the conserved quantities are used to check the 
accuracy and the efficiency of the proposed schemes. The interaction of three so-
litons is presented. For long time simulation, periodic boundary conditions 
equipped with scheme 1 are presented. The numerical results keep the agree-
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ment with the physical phenomena with the proposed methods. Based on our 
numerical tests, we can say that the present methods give accurate numerical 
solutions and are useful for simulation of the conservation properties, motion of 
solitons, and the interactions of solitons for the KdV equation. 
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